Direct visualization of local activities of long DNA strands via image-time correlation.

Eur Biophys J

Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan.

Published: December 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bacteriophages with long DNA genomes are of interest due to their diverse mutations dependent on environmental factors. By lowering the ionic strength of a hydrophobic (PPh4Cl) antagonistic salt (at 1 mM), single long T4 DNA strand fluctuations were clearly observed, while condensed states of T4 DNA globules were formed above 5-10 mM salt. These long DNA strands were treated with fluorescently labeled probes, for which photo bleaching is often unavoidable over a short time of measurement. In addition, long (few tens of [Formula: see text]) length scales are required to have larger fields of view for better sampling, with shorter temporal resolutions. Thus, an optimization between length and time is crucial to obtain useful information. To facilitate the challenge of detecting large biomacromolecules, we here introduce an effective method of live image data analysis for direct visualization and quantification of local thermal fluctuations. The motions of various conformations for the motile long DNA strands were examined for the single- and multi-T4 DNA strands. We find that the unique correlation functions exhibit a relatively high-frequency oscillatory behavior superimposed on the overall slower decay of the correlation function with a splitting of amplitudes deriving from local activities of the long DNA strands. This work shows not only the usefulness of an image-time correlation for analyzing large biomacromolecules, but also provides insight into the effects of a hydrophobic antagonistic salt on active T4 bacteriophage long DNA strands, including thermal translocations in their electrostatic interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8566448PMC
http://dx.doi.org/10.1007/s00249-021-01570-0DOI Listing

Publication Analysis

Top Keywords

long dna
28
dna strands
24
dna
9
direct visualization
8
local activities
8
long
8
activities long
8
image-time correlation
8
antagonistic salt
8
large biomacromolecules
8

Similar Publications

Patterns and Processes of Genomic Evolution Inferred From the Ten Smallest Vertebrate Genomes.

Adv Sci (Weinh)

September 2025

State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.

Pufferfish exhibit the smallest vertebrate genomes, making them ideal models for investigating evolutionary patterns and processes that affect genome size. While the Takifugu rubripes genome was fully sequenced two decades ago, key evolutionary drivers remain elusive. We sequenced 10 pufferfish genomes and generated 35 transcriptomes and 13 methylomes to understand genomic evolutionary mechanisms.

View Article and Find Full Text PDF

The Age-Associated Long Noncoding RNA lnc81 Regulates Ovarian Granulosa Cell Proliferation and Apoptosis Through TEAD2-CCN1/2 Pathway in Mice.

J Cell Physiol

September 2025

Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.

Ovarian granulosa cells (GCs) are pivotal for follicular homeostasis, and their dysregulated apoptosis drives age-related ovarian aging. The Hippo signaling pathway, modulated by long noncoding RNAs (lncRNAs), is implicated in regulating GCs proliferation and ovarian aging. TEAD2 (Transcriptional Enhanced Associate Domain 2), a key downstream transcription factor of the Hippo signaling pathway, plays a critical role in regulating cell proliferation, apoptosis, and embryonic stem cell self-renewal.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a prevalent chronic disease, characterized by progressive joint degeneration and primarily affects older adults. OA leads to reduced functional abilities, a lower quality of life, and an increased mortality rate. Currently, effective treatment options for OA are lacking.

View Article and Find Full Text PDF

Herein we present the rapid development of LH168, a potent and highly selective chemical probe for WDR5, streamlined by utilizing a DEL-ML (DNA encoded library-machine learning) hit as the chemical starting point. LH168 was comprehensively characterized in bioassays and demonstrated potent target engagement at the WIN-site pocket of WDR5, with an EC of approximately 10 nM, a long residence time, and exceptional proteome-wide selectivity for WDR5. In addition, we present the X-ray co-crystal structure and provide insights into the structure-activity relationships (SAR).

View Article and Find Full Text PDF

IGL::CCND1 detected by optical genome mapping revises diagnosis of a B-cell lymphoma.

Am J Clin Pathol

September 2025

Laboratory for Clinical Genomics and Advanced Technology (CGAT)-Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, United States.

Objective: Differentiating between the repertoire of immunoglobulin rearrangements is important in guiding diagnoses and management of B-cell lymphoma processes. A subset of these disease entities, such as chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL), can show distinct genomic profiles with a shared cell of origin. In this report, we describe a rare case in which differentiating between the immunoglobulin family of rearrangements (IGH, IGK, IGL) with optical genome mapping (OGM) helped revise the clinical suspicion of CLL.

View Article and Find Full Text PDF