98%
921
2 minutes
20
Covid-19 is a viral disease caused by the virus SARS-CoV-2 that spread worldwide and caused more than 4.3 million deaths. Moreover, SARS-CoV-2 still continues to evolve, and specifically the E484K, N501Y, and South Africa triple (K417N + E484K + N501Y) spike protein mutants remain as the 'escape' phenotypes. The aim of this study was to compare the interaction between the receptor binding domain (RBD) of the E484K, N501Y and South Africa triple spike variants and ACE2 with the interaction between wild-type spike RBD-ACE2 and to show whether the obtained binding affinities and conformations corraborate clinical findings. The structures of the RBDs of the E484K, N501Y and South Africa triple variants were generated with DS Studio v16 and energetically minimized using the CHARMM22 force field. Protein-protein dockings were performed in the HADDOCK server and the obtained wild-type and mutant spike-ACE2 complexes were submitted to 200-ns molecular dynamics simulations with subsequent free energy calculations using GROMACS. Based on docking binding affinities and free energy calculations the E484K, N501Y and triple mutant variants were found to interact stronger with the ACE2 than the wild-type spike. Interestingly, molecular dynamics and MM-PBSA results showed that E484K and spike triple mutant complexes were more stable than the N501Y one. Moreover, the E484K and South Africa triple mutants triggered greater conformational changes in the spike glycoprotein than N501Y. The E484K variant alone, or the combination of K417N + E484K + N501Y mutations induce significant conformational transitions in the spike glycoprotein, while increasing the spike-ACE2 binding affinity.Communicated by Ramaswamy H. Sarma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8442754 | PMC |
http://dx.doi.org/10.1080/07391102.2021.1975569 | DOI Listing |
Virol Sin
September 2025
State Key Laboratory of Virology and Biosafety, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China; Institute for Vaccine Research at Animal Bio-safety Level Ⅲ Laboratory, Wuhan University, Wuhan, 430071, China.
Since the outbreak of SARS-CoV-2 in late 2019, the cumulative number of confirmed cases worldwide has surpassed 778 million, and the number of deaths has exceeded 7 million, posing a significant threat to human life and health while inflicting enormous losses on the global economy. At the stage where sequential immunization is recommended, there is a pressing demand for mRNA vaccines that can be rapidly adapted to new sequences, are easy to industrialize, and exhibit high safety and effectiveness. We developed a lipid nanoparticle (LNP) system, designated as WNP, which facilitates essentially in situ expression at the injection site and results in lower levels of pro-inflammatory factors in the liver, thus enhancing its safety compared to liver-targeted alternatives.
View Article and Find Full Text PDFEpidemiol Infect
August 2025
Department of Pediatric Infectious Diseases and Immunology, School of Medicine, https://ror.org/04teye511Pontificia Universidad Católica de Chile, Santiago, Chile.
The rapid evolution of SARS-CoV-2 has led to the emergence of variants of concern (VOCs) characterized by increased transmissibility, pathogenicity, and resistance to neutralizing antibodies. Identifying these variants is essential for guiding public health efforts to control COVID-19. Although whole genome sequencing (WGS) is the gold standard for variant identification, its implementation is often limited in developing countries due to resource constraints.
View Article and Find Full Text PDFInt J Biol Macromol
August 2025
School of Life Science, Ludong University, Yantai, Shandong 264025, China. Electronic address:
Coronavirus Disease-2019 (COVID-19) is a respiratory disease caused by the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with a high infectious rate. Due to the easy mutation of SARS-CoV-2, the continuous emergence of SARS-CoV-2 variants not only makes the new coronavirus more contagious but also poses a considerable obstacle to the treatment of COVID-19. In this study, the computer-aided drug design method was used to explore the effects of mutations on the neutralizing efficacy and mechanism of Amubarvimab and Romlusevimab.
View Article and Find Full Text PDFInt J Mol Sci
April 2025
Institute of Health Sciences, University of Opole, 45-060 Opole, Poland.
The SARS-CoV-2 spike receptor-binding motif is crucial for viral entry via interaction with the human ACE2 receptor. Mutations N501Y and E484K, found in several variants of concern, impact viral transmissibility and immune escape, but experimental data on their binding effects remain inconsistent. Using isothermal titration calorimetry (ITC) and molecular dynamics (MD) simulations, we analyzed the thermodynamic and structural effects of these mutations.
View Article and Find Full Text PDFMol Biol Rep
October 2024
Medical Research Scientist, Viral Research & Diagnostic Laboratory, Agartala Government Medical College & GBP Hospital, Agartala, India.
Introduction: From 2020, with advent of COVID-19 pandemic, Tripura has experienced SARS-CoV-2 viral evolution in accordance with other parts of India. Since January 2022, the Omicron variant of SARS-CoV-2 virus became the predominant lineage circulating in India and neighboring countries. This study characterizes the viral genome of the omicron variant circulating in the state since its inception to June, 2023.
View Article and Find Full Text PDF