98%
921
2 minutes
20
Background: In current precision prostate cancer (PCa) surgery era the identification of the best patients candidate for prostate biopsy still remains an open issue. The aim of this study was to evaluate if the prostate target biopsy (TB) outcomes could be predicted by using artificial intelligence approach based on a set of clinical pre-biopsy.
Methods: Pre-biopsy characteristics in terms of PSA, PSA density, digital rectal examination (DRE), previous prostate biopsies, number of suspicious lesions at mp-MRI, lesion volume, lesion location, and Pi-Rads score were extracted from our prospectively maintained TB database from March 2014 to December 2019. Our approach is based on Fuzzy logic and associative rules mining, with the aim to predict TB outcomes.
Results: A total of 1448 patients were included. Using the Frequent-Pattern growth algorithm we extracted 875 rules and used to build the fuzzy classifier. 963 subjects were classified whereas for the remaining 484 subjects were not classified since no rules matched with their input variables. Analyzing the classified subjects we obtained a specificity of 59.2% and sensitivity of 90.8% with a negative and the positive predictive values of 81.3% and 76.6%, respectively. In particular, focusing on ISUP ≥ 3 PCa, our model is able to correctly predict the biopsy outcomes in 98.1% of the cases.
Conclusions: In this study we demonstrated that the possibility to look at several pre-biopsy variables simultaneously with artificial intelligence algorithms can improve the prediction of TB outcomes, outclassing the performance of PSA, its derivates and MRI alone.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8413110 | PMC |
http://dx.doi.org/10.1038/s41391-021-00441-1 | DOI Listing |
J Ultrasound Med
September 2025
Department of Clinical Analysis, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil.
Objectives: To evaluate the performance of artificial intelligence (AI)-based models in predicting elevated neonatal insulin levels through fetal hepatic echotexture analysis.
Methods: This diagnostic accuracy study analyzed ultrasound images of fetal livers from pregnancies between 37 and 42 weeks, including cases with and without gestational diabetes mellitus (GDM). Images were stored in Digital Imaging and Communications in Medicine (DICOM) format, annotated by experts, and converted to segmented masks after quality checks.
Nutr Health
September 2025
Independent researcher, Rome, Italy.
Artificial intelligence (AI) is increasingly applied in nutrition science to support clinical decision-making, prevent diet-related diseases such as obesity and type 2 diabetes, and improve nutrition care in both preventive and therapeutic settings. By analyzing diverse datasets, AI systems can support highly individualized nutritional guidance. We focus on machine learning applications and image recognition tools for dietary assessment and meal planning, highlighting their potential to enhance patient engagement and adherence through mobile apps and real-time feedback.
View Article and Find Full Text PDFJ Empir Res Hum Res Ethics
September 2025
TOBB ETU School of Medicine, History of Medicine and Ethics Department, Ankara, Turkey.
This study investigates how scientists, educators, and ethics committee members in Türkiye perceive the opportunities and risks posed by generative AI and the ethical implications for science and education. This study uses a 22-question survey developed by the EOSC-Future and RDA AIDV Working Group. The responses were gathered from 62 universities across 208 universities in Türkiye, with a completion rate of 98.
View Article and Find Full Text PDFACS Nano
September 2025
Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Vagus nerve stimulation (VNS) is a promising therapy for neurological and inflammatory disorders across multiple organ systems. However, conventional rigid interfaces fail to accommodate dynamic mechanical environments, leading to mechanical mismatches, tissue irritation, and unstable long-term interfaces. Although soft neural interfaces address these limitations, maintaining mechanical durability and stable electrical performance remains challenging.
View Article and Find Full Text PDFJ Interv Card Electrophysiol
September 2025
School of Medicine and Health, Department of Clinical Medicine-Clinical Department for Cardiology, University Medical Centre, Technical University of Munich, Munich, Germany.