98%
921
2 minutes
20
Background: The potent sedative medetomidine is a commonly used adjunct for the immobilisation of non-domestic mammals. However, its use is associated with pronounced cardiovascular side effects, such as bradycardia, vasoconstriction and decreased cardiac output. We investigated the effects of the peripherally-acting alpha-2-adrenoceptor antagonist vatinoxan on cardiovascular properties in medetomidine-tiletamine-zolazepam anaesthetised wild boar (Sus scrofa).
Methods: Twelve wild boars, anaesthetised twice with medetomidine (0.1 mg/kg) and tiletamine/zolazepam (2.5 mg/kg) IM in a randomised, crossover study, were administered (0.1 mg/kg) vatinoxan or an equivalent volume of saline IV (control). Cardiovascular variables, including heart rate (HR), mean arterial blood pressure (MAP), pulmonary artery pressure (PAP), pulmonary artery occlusion pressure (PAOP) and cardiac output (CO), were assessed 5 min prior to vatinoxan/saline administration until the end of anaesthesia 30 min later.
Results: MAP (p < 0.0001), MPAP (p < 0.001) and MPAOP (p < 0.0001) significantly decreased from baseline after vatinoxan until the end of anaesthesia. HR increased significantly (p < 0.0001) from baseline after vatinoxan administration. However, the effect on HR subsided 3 min after vatinoxan. All variables remained constant after saline injection. There was no significant effect of vatinoxan or saline on CO.
Conclusion: Vatinoxan significantly reduced systemic and pulmonary artery hypertension, induced by medetomidine in wild boar.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/vetr.835 | DOI Listing |
Ecology
September 2025
Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Claude Bernard Lyon 1, Villeurbanne, France.
Natal dispersal is a key process in ecology and evolution. Similarities of dispersal patterns between relatives can lead to small-scale kin structure within populations with consequences for population dynamics and genetics. Most studies have focused on birds, lizards, and small mammals.
View Article and Find Full Text PDFPLoS Negl Trop Dis
September 2025
Grupo de Microbiodiversidad y Bioprospección, Faculty of Sciences, Universidad Nacional de Colombia, Medellín, Colombia.
Background: The Amazon region is home to more than 30% of the sand flies species in Colombia, including vectors of Leishmania mainly in the genus Lutzomyia and Psychodopygus. Advances in morphological and molecular taxonomy of sand flies facilitate the development of updated and robust species inventories in understudied areas, such as the departments of Amazonas and Caquetá. Currently, integrating the detection of blood meal sources and Leishmania DNA represents a key approach under the "One Health" concept by providing insights into human and animal health and the dynamics of different ecosystems.
View Article and Find Full Text PDFTransbound Emerg Dis
September 2025
Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
In September 2023, Sweden experienced its first ever outbreak of African swine fever (ASF). One year later, in September 2024, Sweden was declared free from ASF. One of the first actions taken toward control and eradication was an intensive search for wild boar carcasses.
View Article and Find Full Text PDFTransbound Emerg Dis
September 2025
OR Tambo Africa Research Chair for Viral Epidemics, SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania.
African swine fever (ASF) is a hemorrhagic disease of domestic pigs and wild boars. The ASF virus (ASFV), a sole member of the family Asfarviridae and genus , causes this devastating disease. In sub-Saharan Africa, ASFV is maintained through three interlinked cycles: the domestic cycle, the pig-tick cycle, and the sylvatic cycle, which collectively sustain its endemic presence in the region.
View Article and Find Full Text PDFPest Manag Sci
September 2025
Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
Background: Elucidating the species selectivity mechanism of succinate dehydrogenase (SDH) inhibitors (SDHIs) is crucial for the discovery novel eco-friendly SDHI fungicides. Fluxapyroxad (FLX), a representative SDHI, was investigated through in silico study to identify species-specific differences in its binding modes with SDH.
Results: SDH structure models of six species were constructed, and the model predicted by Discovery Studio 3.