Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The electrochemical synthesis of metal-organic frameworks (MOFs) has been widely explored but has involved indirect routes, including anodic dissolution of solid metal electrodes or the use of interfacial redox chemistry to generate base equivalents and drive MOF assembly. These methods are limited in scope, as the former relies on the use of an anode consisting of the metal ion to be incorporated into the MOF, and the latter relies on the compatibility of the metal/ligand solution with the probase that is subsequently oxidized or reduced. We report the facile, direct electrochemical syntheses of four iron-based MOFs via controlled potential oxidation of dissolved metal cations. Oxidation of Fe(II) at +0.75 V (vs Ag/Ag) in a solution containing 2,6-lutidine and terephthalic acid affords highly crystalline Fe-MIL-101. Controlled potential electrolysis with carboxy-functionalized ITO affords Fe-MIL-101 grown directly on the surface of modified electrodes. The methods we report herein represent the first general routes that employ interfacial electrochemistry to alter the oxidation state of metal ions dissolved in solution to directly trigger MOF formation. The reported method is functional group tolerant and will be broadly applicable to the bulk synthesis or surface growth of a range of MOFs based on metal ions with accessible oxidation states.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8393204PMC
http://dx.doi.org/10.1021/acscentsci.1c00686DOI Listing

Publication Analysis

Top Keywords

surface growth
8
controlled potential
8
metal ions
8
metal
5
facile rapid
4
rapid room-temperature
4
room-temperature electrosynthesis
4
electrosynthesis controlled
4
controlled surface
4
growth fe-mil-101
4

Similar Publications

CuCo-Layered Double Hydroxide Nanosheets Grown on Hierarchical Carbonized Wood as Bifunctional Electrode for Supercapacitor and Hydrogen Evolution Reaction.

Adv Sci (Weinh)

September 2025

Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.

Carbonized wood has great potential as a self-supported electrode for energy storage/conversion applications. However, developing efficient and economical bifunctional electrodes by customizing the surface structure remains a challenge. This study proposes a novel multifunctional electrode design strategy, using N/P co-doped carbonized wood (NPCW) as carriers and in situ grows copper nanoparticles (Cu NPs) as nucleation centers to induce vertical growth of CuCo-layered double hydroxid (LDH) nanosheets along the substrate.

View Article and Find Full Text PDF

Crystal Facet-Engineered Anion Regulation Enables Fast-Charging Stability in Lithium Metal Batteries.

Angew Chem Int Ed Engl

September 2025

School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Engineering Resea

Lithium metal batteries (LMBs) offer exceptional energy density and output voltage. However, their practical application remains hindered by sluggish ion transport and uncontrolled lithium dendrite formation, particularly under fast-charging conditions. Here, we report a facet-engineered anion-regulating separator based on zeolitic imidazolate framework-8 (ZIF-8) with preferentially crystal-exposed (110) facets.

View Article and Find Full Text PDF

Exhaled breath analysis offers noninvasive, early lung cancer detection via volatile organic compound (VOC) biomarkers, surpassing blood-based methods. Surface-enhanced Raman spectroscopy (SERS) is ideal for this purpose, combining molecular fingerprint specificity with single-molecule sensitivity. However, conventional SERS substrates face a fundamental limitation: while porous materials such as metal-organic frameworks effectively adsorb VOCs through their subnanometer pores (0.

View Article and Find Full Text PDF

Objectives: To study the molecular mechanisms of LDH-loaded si-NEAT1 for regulating paclitaxel resistance and tumor-associated macrophage (TAM) polarization in breast cancer.

Methods: qRT-PCR and Western blotting were used to detect the expression of lncRNA NEAT1, miR-133b, and PD-L1 in breast cancer SKBR3 cells and paclitaxel-resistant SKBR3 cells (SKBR3-PR). The effects of transfection with si-NEAT1 and miR-133b mimics on MRP, MCRP and PD-L1 expressions and cell proliferation, migration and apoptosis were investigated using qRT-PCR, Western blotting, scratch and Transwell assays, and flow cytometry.

View Article and Find Full Text PDF

Quercetin enhances antioxidant capacity and reproductive performance in daphnia pulex.

Comp Biochem Physiol Part D Genomics Proteomics

August 2025

Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China. Electronic address:

Quercetin is a widely distributed flavonoid found in fruits and vegetables, known for its diverse biological effects. In this study, neonatal Daphnia pulex (within 24 h of birth) were exposed to varying concentrations of quercetin (0, 1, 2.5, 5, and 10 mg/L).

View Article and Find Full Text PDF