98%
921
2 minutes
20
Yeast cell death is triggered when essential nutrients such as potassium and lipid are limited but ammonium is in excess. When ammonium and glucose were maintained at 100% of the normal concentration while all the other essential nutrients in yeast nitrogen base (YNB) were reduced to 2%, yeast growth was halted by ammonium toxicity. Yeast started to grow again when either ammonium was also reduced to 2% or gluconate was added, but simultaneously adding gluconate as well as reducing all the nutrients except glucose 50-fold revived yeast growth to a greater extent, i.e. a quarter of the normal growth. Gluconate, as well as formate and alginate, stimulated yeast growth by buffering the drop in pH. Yeast cells were seemingly more susceptible to low pH under the nutrient-limited conditions, entering the stationary phase at pH higher than that of the normal condition. Carboxylate salts may prove a cost-efficient replacement for large proportions of the essential nutrients as yeast cells, in the presence of 2 mg ml gluconate, could still achieve nearly 90% of the normal growth when cultured in only 10% of the normal YNB concentration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8364610 | PMC |
http://dx.doi.org/10.1007/s13205-021-02955-w | DOI Listing |
mBio
September 2025
Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, USA.
The human fungal pathogen changes its morphology in response to temperature. At 37°C, it grows as a budding yeast, whereas at room temperature (RT), it transitions to hyphal growth. Prior work has demonstrated that 15-20% of transcripts are temperature-regulated, and that transcription factors (TFs) Ryp1-4 are necessary to establish yeast growth.
View Article and Find Full Text PDFACS Synth Biol
September 2025
ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD 4000, Australia.
Fluorescent proteins (FPs) are commonly used as reporters to examine intracellular genetic, molecular, and biochemical status. Flow cytometry is a powerful technique for accurate quantification of single-cell fluorescent levels. Here, we characterize green, red, and blue FPs for use in yeast .
View Article and Find Full Text PDFGeroscience
September 2025
Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
The aging population worldwide faces an increasing burden of age-related conditions, with Alzheimer's disease being a prominent neurodegenerative concern. Drug repurposing, the practice of identifying new therapeutic applications for existing drugs, offers a promising avenue for accelerated intervention. In this study, we utilized the yeast Saccharomyces cerevisiae to screen a library of 1760 FDA-approved compounds, both with and without rapamycin, to assess potential synergistic effects on yeast growth.
View Article and Find Full Text PDFCarbohydr Res
September 2025
Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq.
Chitosan is a modified natural biopolymer obtained through the deacetylation of chitin, which is primarily found in the shells of crustaceans. Chitosan has recently attracted a lot of attention due to its possible use in the chemical, medical and food and industries. Due to its distinct biological activities and functional properties, its applications in the food industry are especially noteworthy.
View Article and Find Full Text PDFPlant J
September 2025
Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea.
Salt stress impairs photosynthetic efficiency and consequently reduces the growth, development, and grain yield of crop plants. The formation of hydrophobic barriers in the root endodermis, including the suberin lamellae and Casparian strips, is a key adaptive strategy for salt stress tolerance. In this study, we identified the role of the rice NAC transcription factor, ONAC005, in salt stress tolerance.
View Article and Find Full Text PDF