Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pathogenic gene variants in humans that affect the sonic hedgehog (SHH) pathway lead to severe brain malformations with variable penetrance due to unknown modifier genes. To identify such modifiers, we established novel congenic mouse models. LRP2-deficient C57BL/6N mice suffer from heart outflow tract defects and holoprosencephaly caused by impaired SHH activity. These defects are fully rescued on a FVB/N background, indicating a strong influence of modifier genes. Applying comparative transcriptomics, we identified Pttg1 and Ulk4 as candidate modifiers upregulated in the rescue strain. Functional analyses showed that ULK4 and PTTG1, both microtubule-associated proteins, are positive regulators of SHH signaling, rendering the pathway more resilient to disturbances. In addition, we characterized ULK4 and PTTG1 as previously unidentified components of primary cilia in the neuroepithelium. The identification of genes that powerfully modulate the penetrance of genetic disturbances affecting the brain and heart is likely relevant to understanding the variability in human congenital disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.199307DOI Listing

Publication Analysis

Top Keywords

shh pathway
8
modifier genes
8
ulk4 pttg1
8
identification disease-relevant
4
disease-relevant modulators
4
shh
4
modulators shh
4
pathway developing
4
developing brain
4
brain pathogenic
4

Similar Publications

AOP 460: Antagonism of Smoothened receptor leading to orofacial clefting.

ALTEX

August 2025

Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.

Sonic hedgehog (SHH) is a major intercellular signaling pathway involved in the orchestration of embryogenesis, including orofacial morphogenesis. The SHH pathway is sensitive to disruption, including both genetic predisposition and chemical-induced disruption at multiple molecular targets including antagonism of the SHH signal transducer Smoothened (SMO). Here we report the adverse outcome pathway (AOP) 460 describing the linkage between antagonism of the SMO receptor, a key intermediate in the hedgehog signaling, and orofacial clefts (OFCs).

View Article and Find Full Text PDF

Aim: This study explores how lipid metabolic reprogramming contributes to the pathogenesis of pulpitis and identifies key molecular targets involved in regulating inflammation, with the goal of developing metabolic interventions to preserve dental pulp vitality.

Methodology: Primary human dental pulp cells (HDPCs) were stimulated with lipopolysaccharide (LPS) and subjected to integrated transcriptomic and metabolomic profiling to map inflammation-associated metabolic shifts. Functional validation included linolenic acid (LA) supplementation (alone or combined with a Fatty Acid Synthase (FASN) inhibitor, TVB-2640), Nuclear receptor subfamily 4 group A member 1 (NR4A1) knockdown, cytokine/NF-κB assessment (ELISA, Western blot), and lipid droplet/FASN visualisation (immunofluorescence).

View Article and Find Full Text PDF

The Sonic Hedgehog (Shh) signaling pathway is essential for the patterning, growth, and morphogenesis of many tissues. During early eye development, Shh is critical for the formation of the two optic vesicles, which give rise to the retina, retinal pigment epithelium (RPE), and optic stalk. It also regulates the balance between cell proliferation and differentiation during retinal histogenesis, a key process in shaping the cellular architecture of the mature retina.

View Article and Find Full Text PDF

Glioblastoma (GBM) represents an extremely aggressive brain malignancy with limited treatment options, difficult prognosis and a highly heterogeneous cellular architecture, including a subpopulation of cancer stem-like cells (CSCs). These CSCs frequently rely on developmental signaling pathways such as Sonic Hedgehog (SHH), which are typically dormant in adult tissue but reactivated in tumors. This study aimed to investigate how SHH pathway inhibition affects both bulk GBM cells (GBMCs) and CD133 + GBM cells (GBM CSCs), with particular emphasis on the influence of astrocyte co-culture, which more closely mimics the brain tumor microenvironment.

View Article and Find Full Text PDF

Hemp Seed-Derived Exosomes Protect Against Dihydrotestosterone-Induced Chicken Feather Growth Inhibition.

Pharmaceuticals (Basel)

August 2025

VIZO Materials Convergence Foundation, Andong 36729, Republic of Korea.

Androgenetic alopecia suppresses hair follicle growth. This occurs via dihydrotestosterone (DHT), which inhibits key molecular pathways such as Wnt/β-catenin and Sonic Hedgehog (SHH) signaling. Exosomes derived from plant callus cultures are promising biomaterials for targeted delivery and regenerative medicine.

View Article and Find Full Text PDF