98%
921
2 minutes
20
Gastric cancer is a common malignancy worldwide. However, the molecular mechanisms underlying this malignancy remain unclear and there are a lack of effective drugs. The present study aimed to investigate the antitumor effect of Dihydroartemisinin (DHA) or inhibition of Tankyrases (TNKS), and determine the underlying molecular mechanisms of gastric cancer. Immunohistochemistry and immunofluorescence analyses were performed to detect the expression levels of TNKS, epithelial-to-mesenchymal transition (EMT) and Wnt/β-catenin pathway-related proteins in gastric cancer tissues and adjacent normal tissues. The Cell Counting Kit-8 assay was performed to assess the viability of HGC-27 and AGS cells following treatment with different concentrations of HLY78 (a Wnt activator) or DHA. Following treatment with HLY78, DHA or small interfering (si)-TNKS1/si-TNKS2, colony formation and migratory abilities were assessed via the colony formation, wound healing and Transwell assays. Furthermore, western blot and immunofluorescence analyses were performed to detect the expression levels of TNKS, EMT- and Wnt/β-catenin-related proteins. The results demonstrated that the expression levels of TNKS, AXI2, β-catenin, N-cadherin and Vimentin were upregulated, whereas E-cadherin expression was downregulated in gastric cancer tissues compared with normal tissues. Furthermore, HLY78 and DHA suppressed the viability of HGC-27 and AGS cells, in a concentration-independent manner. Notably, TNKS knockdown or treatment with DHA suppressed colony formation, migration, TNKS expression, EMT and the Wnt/β-catenin pathway. Opposing effects were observed following treatment with HLY78, which were ameliorated following co-treatment with DHA. Taken together, these results suggest that DHA or inhibition of TNKS can suppress the proliferation and migration of gastric cancer cells, which is partly associated with inactivation of the Wnt/β-catenin pathway and EMT process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8358739 | PMC |
http://dx.doi.org/10.3892/ol.2021.12949 | DOI Listing |
Diagn Pathol
September 2025
Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
Background: Gastric cancer is one of the most common cancers worldwide, with its prognosis influenced by factors such as tumor clinical stage, histological type, and the patient's overall health. Recent studies highlight the critical role of lymphatic endothelial cells (LECs) in the tumor microenvironment. Perturbations in LEC function in gastric cancer, marked by aberrant activation or damage, disrupt lymphatic fluid dynamics and impede immune cell infiltration, thereby modulating tumor progression and patient prognosis.
View Article and Find Full Text PDFOncogene
September 2025
Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan.
Forkhead-box-protein P3 (FOXP3) is a key transcription factor in T regulatory cells (Tregs). However, its expression and significance in non-immune stromal cells in the tumor microenvironment remain unclear. Here, we demonstrated FOXP3 expression in stromal fibroblasts of mouse and human gastrointestinal tumors.
View Article and Find Full Text PDFCell Rep Med
September 2025
Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway. Electronic address:
Accurate identification of tumor-specific markers is vital for developing chimeric antigen receptor (CAR)-based therapies. While cell surface antigens are seldom cancer-restricted, their post-translational modifications (PTMs), particularly aberrant carbohydrate structures, offer attractive alternatives. Among these, the sialyl-Tn (STn) antigen stands out for its prevalent presence in various epithelial tumors.
View Article and Find Full Text PDFNutr Res
August 2025
Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi-do, Republic of Korea. Electronic address:
Although fruits and vegetables were studied botanically in previous studies, few have examined their associations with gastrointestinal (GI) cancer risk based on color classification. Color is familiar to the public and translates phytochemical science into dietary guidance. We hypothesized that the intake of fruits and vegetables would be differently associated with GI cancer risk by color.
View Article and Find Full Text PDFNeuroendocrinology
September 2025
Introduction Neuroendocrine tumors (NETs) are a rare and heterogeneous group of neoplasms with both clinical and genetic diversity. The clinical applicability of molecular profiling using liquid biopsy for identifying actionable drug targets and prognostic indicators in patients with advanced NETs remains unclear. Methods In this study, we utilized a custom-made 37 genes panel of circulating tumor DNA (ctDNA) based on next-generation sequencing (NGS) in 47 patients with advanced NETs.
View Article and Find Full Text PDF