98%
921
2 minutes
20
Escherichia coli JM109 (pGV3-SBA) can assimilate starch by fusing the starch-digesting enzyme α-amylase from Streptococcus bovis NRIC1535 to an OprI' lipoprotein anchor on the cell membrane. This study shows microbial fuel cells (MFCs) development using this recombinant type of E. coli and starch as fuel. We observed the current generation of MFCs with E. coli JM109 (pGV3-SBA) for 120 h. During this period, it consumed 7.1 g/L of starch. A mediator in the form of anthraquinone-2,6-disulfonic acid disodium salt at 0.2, 0.4, and 0.8 mM was added to the MFCs. The highest maximum-current density (271 mA/m) and maximum-power density (29.3 mW/m) performances occurred in the 0.4 mM mediator solution. Coulomb yields were calculated as 3.4%, 3.0%, and 3.5% in 1.0, 5.0, and 10.0 g/L of initial starch, respectively. The concentrations of acetic acid, succinic acid, fumaric acid, and ethanol as metabolites were determined. In particular, 38.3 mM of ethanol was produced from 7.1 g/L of starch. This study suggests the use of recombinant E. coli which can assimilate starch present in starch-fueled MFCs. Moreover, it proposes the possibility of gene recombination technology for using wide variety of biomass as fuel and improving MFC's performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiosc.2021.07.008 | DOI Listing |
Water Res
August 2025
College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China. Electronic address:
This study explores the role of α-Fe₂O₃ in improving extracellular electron transfer (EET) and symbiotic interactions between electroactive Shewanella oneidensis MR-1, its gene-deficient mutants (ΔmtrC, ΔomcA, and ΔcymA), and microalgae (Chlorella vulgaris). The iron oxide facilitates the efficient transfer of electrons generated by MR-1 to microalgal photosystem via the pathway of CymA-MtrC-OmcA to α-Fe₂O₃. This process enhances the removals of TOC, TN, and NH₄⁺-N in the MR-1 bacterial-algal consortium by 9.
View Article and Find Full Text PDFBiosens Bioelectron
August 2025
Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel; The Resnick Sustainable Center for Catalysis, Technion - Israel Institute of Technology, 3200003, Haifa, Israel; Nancy and Stephen Grand Technion Energy Program, Technion - Israel Instit
Exploiting biomass as a fuel source has attracted increasing attention over the last few decades. Combined biotic-abiotic systems can enhance conversion efficiency, but biotic reactions often require oxygen-free conditions, which are hindered by oxygen evolution at the photoanode. Herein, we develop a modular microbial-photoelectrochemical cell (MPEC) that facilitates the one-pot degradation and light-induced conversion of cellulosic material into electrical power and added-value compounds.
View Article and Find Full Text PDFBioresour Technol
August 2025
Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland. Electronic address:
Single-chamber air-cathode microbial fuel cells (SA-MFCs) are an aeration-free, energy-positive technology for nitrogen removal, which is critical for environmental protection. However, existing studies on nitrogen removal mechanisms in SA-MFCs are conflicting, hindering further development. Focusing on removal mechanisms, this study comprehensively investigated three potential nitrogen removal pathways (ammonia volatilisation, electrochemical oxidation and biological conversion) using both conventional hand-made and 3D-printed air cathodes.
View Article and Find Full Text PDFWorld J Clin Cases
September 2025
Department of Burns and Plastic Surgery, Zhongshan City People's Hospital, Zhongshan 528400, Guangdong Province, China.
This article explores the association between salivary uric acid (UA) and periodontitis, systematically analyzing its dual roles and research progress. Studies indicate that UA acts as a primary antioxidant in saliva under physiological conditions (accounting for 70%), protecting periodontal tissues by scavenging reactive oxygen species. However, when gum disease becomes severe, UA can switch roles and fuel inflammation, worsening tissue damage.
View Article and Find Full Text PDFMicroorganisms
August 2025
Department of Nanotechnology, State Research Institute Centre for Physical Sciences and Technology, 02300 Vilnius, Lithuania.
This study investigates microbial fuel cell (MFC) performance through the modification of with gold nanoparticles (AuNPs) and polypyrrole (PPy). The yeast/AuNP-modified electrodes generated the highest median current of 2.57 nA, significantly outperforming the yeast/PPy-modified (0.
View Article and Find Full Text PDF