Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Clubroot, caused by the soil-borne protist , is one of the most destructive diseases of Chinese cabbage worldwide. However, the clubroot resistance mechanisms remain unclear. In this study, in both clubroot-resistant (DH40R) and clubroot-susceptible (DH199S) Chinese cabbage lines, the primary (root hair infection) and secondary (cortical infection) infection stages started 2 and 5 days after inoculation (dai), respectively. With the extension of the infection time, cortical infection was blocked and complete resistance was observed in DH40R, while disease scales of 1, 2, and 3 were observed at 8, 13, and 22 dai in DH199S. Transcriptome analysis at 0, 2, 5, 8, 13, and 22 dai identified 5,750 relative DEGs (rDEGs) between DH40R and DH199S. The results indicated that genes associated with auxin, PR, disease resistance proteins, oxidative stress, and and transcription factors were involved in clubroot resistance regulation. In addition, weighted gene coexpression network analysis (WGCNA) identified three of the modules whose functions were highly associated with clubroot-resistant, including ten hub genes related to clubroot resistance (, , , , , , two , , and ). These results provide valuable information for better understanding the molecular regulatory mechanism of Chinese cabbage clubroot resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8383047PMC
http://dx.doi.org/10.3389/fpls.2021.650252DOI Listing

Publication Analysis

Top Keywords

chinese cabbage
16
clubroot resistance
16
coexpression network
8
hub genes
8
cortical infection
8
infection
6
resistance
6
clubroot
5
transcriptome coexpression
4
network analyses
4

Similar Publications

Hybrid breeding based on male sterility requires the removal of male parents, which is time- and labor-intensive; however, the use of female sterile male parent can solve this problem. In the offspring of distant hybridization between Brassica oleracea and Brassica napus, we obtained a mutant, 5GH12-279, which not only fails to generate gynoecium (thereby causing female sterility) but also has serrated leaves that could be used as a phenotypic marker in seedling screening. Genetic analysis revealed that this trait was controlled by a single dominant gene.

View Article and Find Full Text PDF

Alleviating effects of polyphenol extract from rapeseed meal on type 2 diabetes in mice via modulation of gut microbiota and AMPK/mTOR signaling pathways.

Food Res Int

November 2025

Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition

Type 2 diabetes mellitus (T2DM) is a a complex metabolic disorder that poses a serious threat to human health. Although polyphenol extract from rapeseed meal (RMP) has demonstrated inhibitory activity against α-glucosidase, the alleviating effects on T2DM and the underlying molecular mechanisms remain largely unexplored in T2DM. In this study, the antidiabetic effects of RMP were investigated using a T2DM mouse model induced by a high-fat diet (HFD) combined with streptozotocin (STZ) administration.

View Article and Find Full Text PDF

Pesticides are of great significance in ensuring food yield. However, the extensive use of pesticides has led to severe environmental pollution and significant economic losses. Chitosan-based pesticide delivery systems potentially present a favorable approach to enhance pesticide using efficiency.

View Article and Find Full Text PDF

Cadmium accumulation in different types of vegetable across China: Dietary exposure risk, and a novel method for determining soil cadmium thresholds.

J Hazard Mater

September 2025

State Key Laboratory of Nutrient Use and Management, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.

Cadmium (Cd) contamination in vegetables poses a potential risk to human health; thus an accurate soil Cd threshold is crucial for early warning to ensure safe production. In this study, a national-scale dataset of Cd contents in agricultural soils and vegetables in China was compiled to assess the dietary exposure risk, and a hybrid approach combining conditional inference trees (CITs) and species sensitivity distribution (SSD) was established to derive soil Cd thresholds. The results showed that amaranth, butterhead lettuce, Chinese cabbage, coriander, and garlic had higher Cd accumulation ability among 34 species studied.

View Article and Find Full Text PDF

Deciphering the genetic regulation of flowering time in rapeseed for early-maturation breeding.

J Genet Genomics

September 2025

College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Beibei, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China. Elec

Flowering time is a critical agronomic trait with a profound effect on the productivity and adaptability of rapeseed (Brassica napus L.). Strategically advancing flowering time can reduce the risk of yield losses due to extreme climatic conditions and facilitate the cultivation of subsequent crops on the same land, thereby enhancing overall agricultural efficiency.

View Article and Find Full Text PDF