Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Surface electromyography (sEMG) has great potential in investigating the neuromuscular mechanism for knee pathology. However, due to the complex nature of neural control in lower limb motions and the divergences in subjects' health and habits, it is difficult to directly use the raw sEMG signals to establish a robust sEMG analysis system. To solve this, muscle synergy analysis based on non-negative matrix factorization (NMF) of sEMG is carried out in this manuscript. The similarities of muscle synergy of subjects with and without knee pathology performing three different lower limb motions are calculated. Based on that, we have designed a classification method for motion recognition and knee pathology diagnosis. First, raw sEMG segments are preprocessed and then decomposed to muscle synergy matrices by NMF. Then, a two-stage feature selection method is executed to reduce the dimension of feature sets extracted from aforementioned matrices. Finally, the random forest classifier is adopted to identify motions or diagnose knee pathology. The study was conducted on an open dataset of 11 healthy subjects and 11 patients. Results show that the NMF-based sEMG classifier can achieve good performance in lower limb motion recognition, and is also an attractive solution for clinical application of knee pathology diagnosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8392845 | PMC |
http://dx.doi.org/10.3390/diagnostics11081318 | DOI Listing |