Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Three-finger toxins (3FTXs) are the most clinically relevant components in cobra (genus ) venoms. Administration of the antivenom is the recommended treatment for the snakebite envenomings, while the efficacy to cross-neutralize the different cobra species is typically limited, which is presumably due to intra-specific variation of the 3FTXs composition in cobra venoms. Targeting the clinically relevant venom components has been considered as an important factor for novel antivenom design. Here, we used the recombinant type of long-chain α-neurotoxins (P01391), short-chain α-neurotoxins (P60770), and cardiotoxin A3 (P60301) to generate a new immunogen formulation and investigated the potency of the resulting antiserum against the venom lethality of three medially important cobras in Asia, including the Thai monocled cobra (), the Taiwan cobra (), and the Thai spitting cobra () snake species. With the fusion of protein disulfide isomerase and the low-temperature settings, the correct disulfide bonds were built on these recombinant 3FTXs (r3FTXs), which were confirmed by the circular dichroism spectra and tandem mass spectrometry. Immunization with r3FTX was able to induce the specific antibody response to the native 3FTXs in cobra venoms. Furthermore, the horse and rabbit antiserum raised by the r3FTX mixture is able to neutralize the venom lethality of the selected three medically important cobras. Thus, the study demonstrated that the r3FTXs are potential immunogens in the development of novel antivenom with broad neutralization activity for the therapeutic treatment of victims involving cobra snakes in countries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8402450PMC
http://dx.doi.org/10.3390/toxins13080556DOI Listing

Publication Analysis

Top Keywords

cobra venoms
12
cobra
9
three-finger toxins
8
clinically relevant
8
novel antivenom
8
venom lethality
8
development broad-spectrum
4
broad-spectrum antiserum
4
antiserum cobra
4
venoms
4

Similar Publications

Australian elapid snakes possess potent procoagulant venoms, capable of inducing severe venom-induced consumption coagulopathy (VICC) in snakebite victims through rapid activation of the coagulation cascade by converting the FVII and prothrombin zymogens into their active forms. These venoms fall into two mechanistic categories: FXa-only venoms, which hijack host factor Va, and FXa:FVa venoms, containing a complete venom-derived prothrombinase complex. While previous studies have largely focused on human plasma, the ecological and evolutionary drivers behind prey-selective venom efficacy remain understudied.

View Article and Find Full Text PDF

Differences in venom within snake species can affect the efficacy of antivenom, but how this variation manifests across broad geographical scales remains poorly understood. envenoming causes severe morbidity in China, yet whether intraspecific venom variation exists across mainland regions is unknown. We collected venom samples from seven biogeographical regions (spanning > 2000 km latitude).

View Article and Find Full Text PDF

Venoms of the Palearctic vipers in the genus cause severe procoagulant clinical effects, yet the precise molecular targets remain incompletely defined. To fill this toxicological knowledge gap, we tested five venoms-, , (Turkmenistan and Uzbekistan localities), and -using plasma clotting assays, Factors VII, X, XI, and XII and prothrombin zymogen activation assays, and SDS-PAGE to visualise Factor V (FV) cleavage. All venoms induced extremely rapid clot formation (10.

View Article and Find Full Text PDF

, commonly known as the death adder, is a venomous Australian snake and a member of the Elapidae family. Due to its robust body and triangular head, it was historically misclassified as a viper. Its venom is known for neurotoxic, hemorrhagic, and hemolytic effects but displays low anticoagulant activity.

View Article and Find Full Text PDF

Utilizing liquid chromatography-mass spectrometry to map targeting of snake venom components by antivenom.

J Chromatogr B Analyt Technol Biomed Life Sci

November 2025

Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India. Electronic address:

Preclinical efficacy testing is an essential aspect of evaluating quality of antivenoms (AVs). Recent years have witnessed a surge in development of in vitro methods to replace or reduce reliance on the standard mouse lethality assay. In this study, we propose a novel, reversed phase liquid chromatography-mass spectrometry (RPLC-MS)-based platform for monitoring AV activity on venom components under the WHO recommended in solution AV testing conditions.

View Article and Find Full Text PDF