98%
921
2 minutes
20
After an ischemic event, there is activation of fibroblasts leading to scar formation. It is critical to limit the profibrotic remodeling and activate the reparative remodeling phase to limit cardiac diastolic dysfunction. Mesenchymal stem cell (MSC) exosomes offer significant protection against ischemia-related systolic dysfunction. Here, we studied if MSC exosomes would offer protection against profibrotic events in mouse hearts subjected to acute ischemia [1 h left coronary artery (LCA) occlusion] or chronic ischemia (7 days LCA occlusion). After acute ischemia, there was activation of inflammatory signals, more in the peri-infarct than in the infarct area, in the saline (vehicle)-treated mice. At the same time, there was expression of cardiac remodeling signals (vimentin, collagens-1 and -3, and fibronectin), more in the infarct area. Treatment with MSC exosomes before LCA ligation suppressed inflammatory signals during acute and chronic ischemia. Furthermore, exosome treatment promoted pro-reparative cardiac extracellular matrix (ECM) remodeling in both infarct and peri-infarct areas by suppressing fibronectin secretion and by modulating collagen secretion to reduce fibrotic scar formation through altered cellular signaling pathways. Proteomics study revealed intense expression of IL-1β and activation of profibrotic signals in the saline-treated hearts and their suppression in MSC exosome-treated hearts. To our knowledge, this is the first report on the infarct and peri-infarct area proteomics of ischemic mice hearts to explain MSC exosome-mediated suppression of scar formation in the ischemic mouse hearts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpregu.00124.2021 | DOI Listing |
Tissue Eng Regen Med
September 2025
Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, #505 BanPo-Dong, SeoCho-Gu, Seoul, 06591, Republic of Korea.
Background: Sjögren's syndrome (SS) is a chronic autoimmune disease delineated by excessive lymphocyte infiltration to the lacrimal or salivary glands, leading to dry eye and dry mouth. Exosomes secreted from mesenchymal stem cells (MSC) are known to have anti-inflammatory and tissue regeneration abilities. This study endeavored to demonstrate the effect of MSC-derived exosomes on the clinical parameter of dry eyes and associated pathology in SS mouse model.
View Article and Find Full Text PDFSaudi Dent J
September 2025
Oral Biology Department, Faculty of Dentistry, Ain Shams University, Cairo, Egypt.
To compare the efficacy of using bone marrow mesenchymal stem cell (BM-MSC) exosomes and injectable platelet rich fibrin (i-PRF) on the submandibular salivary glands (SMGs) of aged albino rats in restoring salivary gland structure and function. A total of 40 healthy male albino rats were used, two for obtaining the BM-MSCs, 10 for i-PRF preparation and seven adult rats (6-8 months old) represented the control group (Group 1). The remaining 21 rats were aged (18-20 months old) and divided into three groups of seven rats each; (Group 2): received no treatment, (Group 3): each rat received a single intraglandular injection of BM-MSC exosomes (50 μg/kg/dose suspended in 0.
View Article and Find Full Text PDFCurr Stem Cell Res Ther
August 2025
Spinal cord injury (SCI) is a severe, disabling condition for which current treatments are largely insufficient in restoring neurological function. Despite advances in surgical and pharmacological interventions, no effective treatment currently exists to reverse neurological deficits caused by SCI. Mesenchymal stem cells (MSCs), especially human umbilical cord-derived MSCs (hucMSCs), have shown promise in tissue regeneration due to their multipotency and low immunogenicity.
View Article and Find Full Text PDFBiology (Basel)
August 2025
Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan.
Mesenchymal stem cells (MSCs) are a type of multipotent, non-hematopoietic cells of mesodermal origin. Due to their strong immunomodulatory, immunosuppressive, and regenerative potential, MSCs are used in cell therapy for inflammatory, immune-mediated, and degenerative diseases. Exosomes derived from MSCs have several advantages over MSC therapy, including non-immunogenicity, lack of infusion toxicity, ease of isolation, manipulation, and storage, cargo specificity, and the absence of tumor-forming potential and ethical concerns.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2025
Department of Sports Medicine, Shanghai General Hospital, Shanghai, China.
Rotator cuff tears (RCTs) are a prevalent cause of shoulder dysfunction, with postoperative retearing remaining a significant challenge due to poor tendon-to-bone healing. Mesenchymal stem cells (MSCs), owing to their multipotency, immunomodulatory properties, and diverse tissue sources, have emerged as a promising therapeutic strategy. Current approaches include direct MSC implantation, MSC-laden scaffolds for structural support, and utilization of MSC-derived conditioned medium (CM) or exosomes to enhance regeneration.
View Article and Find Full Text PDF