Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rare coding variants of the microglial triggering receptor expressed on myeloid cells 2 (TREM2) confer an increased risk for Alzheimer's disease (AD) characterized by the progressive accumulation of aggregated forms of amyloid β peptides (Aβ). Aβ peptides are generated by proteolytic processing of the amyloid precursor protein (APP). Heterogeneity in proteolytic cleavages and additional post-translational modifications result in the production of several distinct Aβ variants that could differ in their aggregation behavior and toxic properties. Here, we sought to assess whether post-translational modifications of Aβ affect the interaction with TREM2. Biophysical and biochemical methods revealed that TREM2 preferentially interacts with oligomeric Aβ, and that phosphorylation of Aβ increases this interaction. Phosphorylation of Aβ also affected the TREM2 dependent interaction and phagocytosis by primary microglia and in APP transgenic mouse models. Thus, TREM2 function is important for sensing phosphorylated Aβ variants in distinct aggregation states and reduces the accumulation and deposition of these toxic Aβ species in preclinical models of Alzheimer's disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497331PMC
http://dx.doi.org/10.1002/glia.24077DOI Listing

Publication Analysis

Top Keywords

10
interaction trem2
8
aβ species
8
alzheimer's disease
8
post-translational modifications
8
aβ variants
8
phosphorylation aβ
8
trem2
6
differential interaction
4
trem2 modulates
4

Similar Publications

Background: The Midasin AAA (ATPase associated with various activities) ATPase 1 (MDN1) gene, a member of the AAA protein family, plays a crucial role in ribosome maturation. MDN1 is expressed in the human brain throughout life, especially during early development and adulthood. However, MDN1 variants have not been previously reported in patients with epilepsy.

View Article and Find Full Text PDF

The Saccharomyces cerevisiae Yta7 is a chromatin remodeler harboring a histone-interacting bromodomain (BRD) and two AAA+ modules. It is not well understood how Yta7 recognizes the histone H3 tail to promote nucleosome disassembly for DNA replication or RNA transcription. By cryo-EM analysis, here we show that Yta7 assembles a three-tiered hexamer with a top BRD tier, a middle AAA1 tier, and a bottom AAA2 tier.

View Article and Find Full Text PDF

The interest in the A-stage of the adsorption/bio-oxidation (A/B) process has considerably increased due to its capacity of carbon redirection to the solids stream. Induced by its flexible and compact design, the Alternating Activated Adsorption (AAA) was recently implemented in full-scale as an alternative A-stage system. However, the literature on such a system is scarce.

View Article and Find Full Text PDF

Two-Step Activation Mechanism of the ClpB Disaggregase for Sequential Substrate Threading by the Main ATPase Motor.

Cell Rep

June 2019

Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK. Electronic address:

AAA+ proteins form asymmetric hexameric rings that hydrolyze ATP and thread substrate proteins through a central channel via mobile substrate-binding pore loops. Understanding how ATPase and threading activities are regulated and intertwined is key to understanding the AAA+ protein mechanism. We studied the disaggregase ClpB, which contains tandem ATPase domains (AAA1, AAA2) and shifts between low and high ATPase and threading activities.

View Article and Find Full Text PDF

The CryoEM structure of the ribosome maturation factor Rea1.

Elife

November 2018

Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.

The biogenesis of 60S ribosomal subunits is initiated in the nucleus where rRNAs and proteins form pre-60S particles. These pre-60S particles mature by transiently interacting with various assembly factors. The ~5000 amino-acid AAA+ ATPase Rea1 (or Midasin) generates force to mechanically remove assembly factors from pre-60S particles, which promotes their export to the cytosol.

View Article and Find Full Text PDF