98%
921
2 minutes
20
Patterns in external sensory stimuli can rapidly entrain neuronally generated oscillations observed in electrophysiological data. Here, we manipulated the temporal dynamics of visual stimuli with cross-frequency coupling (CFC) characteristics to generate steady-state visual evoked potentials (SSVEPs). Although CFC plays a pivotal role in neural communication, some cases reporting CFC may be false positives due to non-sinusoidal oscillations that can generate artificially inflated coupling values. Additionally, temporal characteristics of dynamic and non-linear neural oscillations cannot be fully derived with conventional Fourier-based analyses mainly due to trade off of temporal resolution for frequency precision. In an attempt to resolve these limitations of linear analytical methods, Holo-Hilbert Spectral Analysis (HHSA) was investigated as a potential approach for examination of non-linear and non-stationary CFC dynamics in this study. Results from both simulation and SSVEPs demonstrated that temporal dynamic and non-linear CFC features can be revealed with HHSA. Specifically, the results of simulation showed that the HHSA is less affected by the non-sinusoidal oscillation and showed possible cross frequency interactions embedded in the simulation without any assumptions. In the SSVEPs, we found that the time-varying cross-frequency interaction and the bidirectional coupling between delta and alpha/beta bands can be observed using HHSA, confirming dynamic physiological signatures of neural entrainment related to cross-frequency coupling. These findings not only validate the efficacy of the HHSA in revealing the natural characteristics of signals, but also shed new light on further applications in analysis of brain electrophysiological data with the aim of understanding the functional roles of neuronal oscillation in various cognitive functions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8375503 | PMC |
http://dx.doi.org/10.3389/fnins.2021.673369 | DOI Listing |
J Comput Neurosci
September 2025
School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China.
Transcranial alternating current stimulation (tACS) enables non-invasive modulation of brain activity, holding promise for cognitive research and clinical applications. However, it remains unclear how the spiking activity of cortical neurons is modulated by specific electric field (E-field) distributions. Here, we use a multi-scale computational framework that integrates an anatomically accurate head model with morphologically realistic neuron models to simulate the responses of layer 5 pyramidal cells (L5 PCs) to the E-fields generated by conventional M1-SO tACS.
View Article and Find Full Text PDFFront Behav Neurosci
August 2025
Department of Sensory and Cognitive Physiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
Sound influences motor functions and sound perception is conversely modulated by locomotion. Accumulating evidence supports an interconnection between the auditory system and the basal ganglia (BG), which has functional implications on the interaction between the two systems. Substantial evidence now supports auditory cortex and auditory thalamus inputs to the tri-laminar region of the tail of the striatum (tTS) in rodents.
View Article and Find Full Text PDFSci Adv
September 2025
Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
Advances in brain stimulation have made it possible to target smaller and smaller regions for electromagnetic stimulation, in the hopes of producing increasingly focal neural effects. However, the brain is extensively interconnected, and the neurons comprising those connections may themselves be particularly susceptible to neurostimulation. Here, we test this hypothesis by identifying long-range projections in single-unit recordings from nonhuman primates receiving transcranial alternating current stimulation.
View Article and Find Full Text PDFSoc Cogn Affect Neurosci
September 2025
Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.
There is emerging evidence that a performer's body movements may enhance music-induced pleasure. However, the neural mechanism underlying such modulation remains largely unexplored. This study utilized behavioral, psychophysiological and electroencephalographic data collected from 32 listeners (analyzed sample = 31) as they watched and listened to vocal (Mandarin lyrics) and violin performances of pop music videos.
View Article and Find Full Text PDFHumans spontaneously synchronize movements to a perceived underlying pulse, or beat, in music. Beat perception may be indexed by the synchronization of neural oscillations to the beat, marked by increases in EEG amplitude at the beat frequency [Nozaradan, S., Peretz, I.
View Article and Find Full Text PDF