98%
921
2 minutes
20
There is a rising interest in use of big data approaches to personalize treatment of inflammatory bowel diseases (IBDs) and to predict and prevent outcomes such as disease flares and therapeutic nonresponse. Machine learning (ML) provides an avenue to identify and quantify features across vast quantities of data to produce novel insights in disease management. In this review, we cover current approaches in ML-driven predictive outcomes modeling for IBD and relate how advances in other fields of medicine may be applied to improve future IBD predictive models. Numerous studies have incorporated clinical, laboratory, or omics data to predict significant outcomes in IBD, including hospitalizations, outpatient corticosteroid use, biologic response, and refractory disease after colectomy, among others, with considerable health care dollars saved as a result. Encouraging results in other fields of medicine support efforts to use ML image analysis-including analysis of histopathology, endoscopy, and radiology-to further advance outcome predictions in IBD. Though obstacles to clinical implementation include technical barriers, bias within data sets, and incongruence between limited data sets preventing model validation in larger cohorts, ML-predictive analytics have the potential to transform the clinical management of IBD. Future directions include the development of models that synthesize all aforementioned approaches to produce more robust predictive metrics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9165557 | PMC |
http://dx.doi.org/10.1093/ibd/izab187 | DOI Listing |
BMC Oral Health
September 2025
Oral and Maxillofacial Radiology Department, Cairo university, Cairo, Egypt.
Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.
Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.
BMC Nephrol
September 2025
School of Computer Science and Technology, Guangxi University of Science and Technology, Liuzhou, China.
BMC Psychiatry
September 2025
Department of Cognitive Neuroscience, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.
View Article and Find Full Text PDFOdontology
September 2025
Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.
Orthodontic-induced gingival enlargement (OIGE) affects approximately 15-30% of patients undergoing orthodontic treatment and remains largely unpredictable, often relying on subjective clinical assessments made after irreversible tissue changes have occurred. S100A4 is a well-characterized marker of activated fibroblasts involved in pathological tissue remodeling. This was a cross-sectional precision biomarker study that analyzed gingival tissue samples from three groups: healthy controls (n = 60), orthodontic patients without gingival enlargement (n = 31), and patients with clinically diagnosed OIGE (n = 61).
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
September 2025
Department of Surgery, Mannheim School of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
Purpose: The study aims to compare the treatment recommendations generated by four leading large language models (LLMs) with those from 21 sarcoma centers' multidisciplinary tumor boards (MTBs) of the sarcoma ring trial in managing complex soft tissue sarcoma (STS) cases.
Methods: We simulated STS-MTBs using four LLMs-Llama 3.2-vison: 90b, Claude 3.