98%
921
2 minutes
20
Significance: Quantitative stiffness information can be a powerful aid for tumor or fibrosis diagnosis. Currently, very promising elastography approaches developed for non-contact biomedical imaging are based on transient shear-waves imaging. Transient elastography offers quantitative stiffness information by tracking the propagation of a wave front. The most common method used to compute stiffness from the acquired propagation movie is based on shear-wave time-of-flight calculations.
Aim: We introduce an approach to transient shear-wave elastography with spatially coherent sources, able to yield full-field quantitative stiffness maps with reduced artifacts compared to typical artifacts observed in time-of-flight.
Approach: A noise-correlation algorithm developed for passive elastography is adapted to spatially coherent narrow or any band sources. This noise-correlation-inspired (NCi) method is employed in parallel with a classic time-of-flight approach. Testing is done on simulation images, experimental validation is conducted with a digital holography setup on controlled homogeneous samples, and full-field quantitative stiffness maps are presented for heterogeneous samples and ex-vivo biological tissues.
Results: The NCi approach is first validated on simulations images. Stiffness images processed by the NCi approach on simulated inclusions display significantly less artifacts than with a time-of-flight reconstruction. The adaptability of the NCi algorithm to narrow or any band shear-wave sources was tested successfully. Experimental testing on homogeneous samples demonstrates similar values for both the time-of-flight and the NCi approach. Soft inclusions in agarose sample could be resolved using the NCi method and feasibility on ex-vivo biological tissues is presented.
Conclusions: The presented NCi approach was successful in computing quantitative full-field stiffness maps with narrow and broadband source signals on simulation and experimental images from a digital holography setup. Results in heterogeneous media show that the NCi approach could provide stiffness maps with less artifacts than with time-of-flight, demonstrating that a NCi algorithm is a promising approach for shear-wave transient elastography with spatially coherent sources.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8374320 | PMC |
http://dx.doi.org/10.1117/1.JBO.26.8.086006 | DOI Listing |
STAR Protoc
September 2025
Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD, USA. Electronic address:
Tracking the translocation of fluorescent-based reporters at the single-cell level in living mouse embryos requires specialized expertise in mouse embryology and deep computational skills. Here, we detail an approach to quantify cyclin-dependent kinase (CDK) activity levels in single cells throughout different stages of the pre-implantation embryo. We discuss in vitro culture strategies that enable efficient live fluorescent confocal image acquisition and subsequent cell tracking.
View Article and Find Full Text PDFCancer
September 2025
Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York, USA.
Background: Trials of neoadjuvant chemoimmunotherapy (chemoIO) have changed the standard of care for resectable nonsmall cell lung cancer (NSCLC). This study characterizes the outcomes of off-trial patients who received treatment with neoadjuvant chemoIO.
Methods: The authors analyzed records of patients with stage IB-III NSCLC who received neoadjuvant chemoIO with an intent to proceed to surgical resection at three US academic institutions.
Clin Infect Dis
September 2025
Harvard Medical School, Boston, Massachusetts, USA.
This article provides a focused update to the clinical practice guideline on the treatment and management of patients with coronavirus disease 2019 (COVID-19), developed by the Infectious Diseases Society of America. The guideline panel presents a recommendation on the use of abatacept in hospitalized adults with severe or critical COVID-19. The recommendation is based on evidence derived from a systematic literature review and adheres to a standardized methodology for rating the certainty of evidence and strength of recommendation according to the GRADE (Grading of Recommendations, Assessment, Development, and Evaluation) approach.
View Article and Find Full Text PDFJ Genet Couns
October 2025
Department of Communication, University of Utah, Salt Lake City, Utah, USA.
With advances in next-generation sequencing technologies, individuals can seek genetic risk information for multiple conditions. However, feasibility and communication challenges could arise if offering multiple genetic tests simultaneously, such as cancer predisposition testing and carrier screening for pregnancy planning. Genetic screening introduces uncertainty from probabilistic results, ambiguous gene-disease associations, and complex variant interpretation, intertwining with psychosocial concerns impacting decision-making and emotional well-being.
View Article and Find Full Text PDFBull Math Biol
September 2025
Wolfson Centre for Mathematical Biology, Mathematical Institute, Oxford, UK.
Adaptive therapy (AT) protocols have been introduced to combat drug resistance in cancer, and are characterized by breaks from maximum tolerated dose treatment (the current standard of care in most clinical settings). These breaks are scheduled to maintain tolerably high levels of tumor burden, employing competitive suppression of treatment-resistant sub-populations by treatment-sensitive sub-populations. AT has been integrated into several ongoing or planned clinical trials, including treatment of metastatic castrate-resistant prostate cancer, ovarian cancer, and BRAF-mutant melanoma, with initial clinical results suggesting that it can offer significant extensions in the time to progression over the standard of care.
View Article and Find Full Text PDF