98%
921
2 minutes
20
Blood pumps are becoming increasingly important for medical devices. They are used to assist and control the blood flow and blood pressure in the patient's body. To accurately control blood pumps, information about important hydrodynamic parameters such as blood flow rate, pressure difference and viscosity is needed. These parameters are difficult to measure online. Therefore, an accurate estimation of these parameters is crucial for the effective operation of implantable blood pumps. In this study, in vitro tests with bovine blood were conducted to collect data about the non-linear dependency of blood flow rate, flow resistance (pressure difference) and whole blood viscosity on motor current and rotation speed of a prototype blood pump. Gaussian process regression models are then used to model the non-linear mappings from motor current and rotation speed to the hydrodynamic variables of interest. The performance of the estimation is evaluated for all three variables and shows very high accuracy. For blood flow rate - correlation coefficient ( = 1, root mean squared error () = 0.31 ml min, maximal error () = 9.31 ml min; for pressure = 1, = 0.09 mmHg, = 8.34 mmHg; and for viscosity = 1, = 0.09 mPa.s, = 0.31 mPa⋅s. The current findings suggest that this method can be employed for highly accurate online estimation of essential hydrodynamic parameters for implantable blood pumps.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/03913988211006720 | DOI Listing |
J Neurooncol
September 2025
Division of Neurosurgery, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Tottori, Japan.
Purpose: This study aimed to evaluate the prognostic significance of microvessel density (MVD), assessed by CD34 immunohistochemistry (IHC), and its correlation with radiological features and bevacizumab (BEV) treatment efficacy in newly diagnosed glioblastoma.
Methods: We retrospectively analyzed 41 patients with newly diagnosed glioblastoma. MVD was quantified using CD34 IHC, and patients were stratified into low and high MVD groups according to the cutoff value determined by receiver operating characteristic curve analysis (sensitivity, 76.
Clin J Gastroenterol
September 2025
Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
Portopulmonary hypertension (POPH), a subtype of pulmonary arterial hypertension (PAH), develops with portal hypertension and may persist after liver transplantation. While there have been successes using balloon-occluded retrograde transvenous obliteration (BRTO) for POPH, no reports exist on long-term follow-up. A 60-year-old man with hepatitis C cirrhosis developed POPH.
View Article and Find Full Text PDFAnn Surg Oncol
September 2025
Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
Background: Hepatocellular carcinoma (HCC) frequently invades the portal vein, leading to early recurrence and a poor prognosis. However, the mechanisms underlying this invasion remain unclear. In this study, we aimed to detect portal vein circulating tumor cells (CTCs) using a Glypican-3-positive detection method and evaluate their prognostic significance.
View Article and Find Full Text PDFNeurochem Res
September 2025
School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
Metabolic synergy between astrocytes and neurons is key to maintaining normal brain function. As the main supporting cells in the brain, astrocytes work closely with neurons through intercellular metabolic synergy networks to jointly regulate energy metabolism, lipid metabolism, synaptic transmission, and cerebral blood flow. This important synergy is often disrupted in neurological diseases such as Alzheimer's disease, Parkinson's disease, and stroke.
View Article and Find Full Text PDFAmino Acids
September 2025
Colorectal Research Center, Iran University of Medical Sciences, Tehran, 1445613131, Iran.
Anal fissure causes pain and bleeding during or after bowel movements, significantly impacting individuals' quality of life. Current treatments aim to interrupt this cycle but have associated risks and limitations. The emergence of arginine, crucial for protein creation and nitric oxide (NO) production, presents an intriguing therapeutic avenue by the impact on reducing anal sphincter pressure and enhancing anoderm blood flow, due to its roles in vasodilation, anti-inflammatory responses, and collagen synthesis, which can promote wound healing and highlighting its potential as an alternative therapy.
View Article and Find Full Text PDF