Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Early screening of COVID-19 is essential for pandemic control, and thus to relieve stress on the health care system. Lung segmentation from chest X-ray (CXR) is a promising method for early diagnoses of pulmonary diseases. Recently, deep learning has achieved great success in supervised lung segmentation. However, how to effectively utilize the lung region in screening COVID-19 still remains a challenge due to domain shift and lack of manual pixel-level annotations. We hereby propose a multi-appearance COVID-19 screening framework by using lung region priors derived from CXR images. Firstly, we propose a multi-scale adversarial domain adaptation network (MS-AdaNet) to boost the cross-domain lung segmentation task as the prior knowledge to the classification network. Then, we construct a multi-appearance network (MA-Net), which is composed of three sub-networks to realize multi-appearance feature extraction and fusion using lung region priors. At last, we can obtain prediction results from normal, viral pneumonia, and COVID-19 using the proposed MA-Net. We extend the proposed MS-AdaNet for lung segmentation task on three different public CXR datasets. The results suggest that the MS-AdaNet outperforms contrastive methods in cross-domain lung segmentation. Moreover, experiments reveal that the proposed MA-Net achieves accuracy of 98.83 % and F1-score of 98.71 % on COVID-19 screening. The results indicate that the proposed MA-Net can obtain significant performance on COVID-19 screening.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8843059PMC
http://dx.doi.org/10.1109/JBHI.2021.3104629DOI Listing

Publication Analysis

Top Keywords

lung segmentation
20
covid-19 screening
16
lung region
16
region priors
12
proposed ma-net
12
lung
9
chest x-ray
8
screening covid-19
8
cross-domain lung
8
segmentation task
8

Similar Publications

The morphological patterns of lung adenocarcinoma (LUAD) are recognized for their prognostic significance, with ongoing debate regarding the optimal grading strategy. This study aimed to develop a clinical-grade, fully quantitative, and automated tool for pattern classification/quantification (PATQUANT), to evaluate existing grading strategies, and determine the optimal grading system. PATQUANT was trained on a high-quality dataset, manually annotated by expert pathologists.

View Article and Find Full Text PDF

Background: Fetal MRI is increasingly used to investigate fetal lung pathologies, and super-resolution (SR) algorithms could be a powerful clinical tool for this assessment. Our goal was to investigate whether SR reconstructions result in an improved agreement in lung volume measurements determined by different raters, also known as inter-rater reliability.

Materials And Methods: In this single-center retrospective study, fetal lung volumes calculated from both SR reconstructions and the original images were analyzed.

View Article and Find Full Text PDF

[A case report of tracheobronchial Dieulafoy's disease].

Zhonghua Jie He He Hu Xi Za Zhi

September 2025

Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.

Tracheobronchial Dieulafoy's disease (TBDD) is a rare bronchial artery vascular malformation, characterized clinically by sudden, recurrent, and life-threatening massive hemoptysis. This article reports the case of a 9-year-old female patient who presented with massive hemoptysis lasting two weeks. Following ineffective treatment at a local hospital, she was transferred to our institution.

View Article and Find Full Text PDF

Dosiomics-guided deep learning for radiation esophagitis prediction in lung cancer: optimal region of interest definition via multi-branch fusion auxiliary learning.

Radiother Oncol

September 2025

Department of Radiotherapy Center, 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325000, China. Electronic address:

Background: Accurate delineation of regions of interest (ROIs) is critical for feature extraction and selection in radiomics-based prediction models.

Purpose: To develop a combined dosiomics and deep learning (DL) model for predicting grade ≥ 2 radiation esophagitis (RE) in lung cancer patients undergoing radiotherapy, we propose a multi-task auxiliary learning approach to define accurate and objective ROIs based on radiation dose distribution (RDD) images.

Materials And Methods: Lung cancer patients who underwent radiotherapy were gathered retrospectively from hospital 1 (January 2020 and December 2022) for model development.

View Article and Find Full Text PDF

Segmentectomies Made Easy series: robotic-assisted right S1 and S2 segmentectomy.

Multimed Man Cardiothorac Surg

September 2025

Department of Thoracic Surgery, New Cross Hospital, Royal Wolverhampton NHS Trust, Wolverhampton, UK

Three-dimensional (3D) guided robotic-assisted thoracic surgery is increasingly recognized as the pioneering approach for the most complex of pulmonary resections, offering high-definition 3D visualization, enhanced instrument augmentation and tremor-free tissue articulation. Compared with open thoracotomy, the robotic platform is associated with reduced peri-operative morbidity, shorter hospital admissions and faster patient recovery. However, sublobar resections such as segmentectomies remain anatomically and technically demanding, particularly in the context of resecting multiple segments, as showcased in this right S1 and S2 segmentectomy.

View Article and Find Full Text PDF