Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Kidneys are critical for the elimination of many drugs and metabolites via the urine, filtering waste and maintaining proper fluid and electrolyte balance. Emerging technologies incorporating engineered three-dimensional (3D) cell culture models, such as organoids and microphysiological systems (MPS) culture platforms, have been developed to replicate nephron function, leading to enhanced efficacy, safety, and toxicity evaluation of new drugs and environmental exposures. Organoids are tiny, self-organized three-dimensional tissue cultures derived from stem cells that can include dozens of cell types to replicate the complexity of an organ. In contrast, MPS are highly controlled fluidic culture systems consisting of isolated cell type(s) that can be used to deconvolute mechanism and pathophysiology. Both systems, having their own unique benefits and disadvantages, have exciting applications in the field of kidney disease modeling and therapeutic discovery and toxicology. In this review, we discuss current uses of both hPSC-derived organoids and MPS as pre-clinical models for studying kidney diseases and drug induced nephrotoxicity. Examples such as the use of organoids to model autosomal dominant polycystic kidney disease, and the use of MPS to predict renal clearance and nephrotoxic concentrations of novel drugs are briefly discussed. Taken together, these novel platforms allow investigators to elaborate critical scientific questions. While much work needs to be done, utility of these 3D cell culture technologies has an optimistic outlook and the potential to accelerate drug development while reducing the use of animal testing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8350564PMC
http://dx.doi.org/10.3389/fphar.2021.695920DOI Listing

Publication Analysis

Top Keywords

accelerate drug
8
drug development
8
animal testing
8
cell culture
8
cell types
8
kidney disease
8
kidney
5
kidney organoid
4
organoid microphysiological
4
microphysiological kidney
4

Similar Publications

The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.

View Article and Find Full Text PDF

The aging population worldwide faces an increasing burden of age-related conditions, with Alzheimer's disease being a prominent neurodegenerative concern. Drug repurposing, the practice of identifying new therapeutic applications for existing drugs, offers a promising avenue for accelerated intervention. In this study, we utilized the yeast Saccharomyces cerevisiae to screen a library of 1760 FDA-approved compounds, both with and without rapamycin, to assess potential synergistic effects on yeast growth.

View Article and Find Full Text PDF

Technological advances and the desire to reduce dependence on animal models have brought human-relevant models to the forefront of drug development. This paradigm shift is leveraging the advances in systems and new approach methodologies (NAMs), which was the focus of a workshop convened by the Health and Environmental Sciences Institute (HESI) in May 2024. Highlights included discussions on predicting cardiac failure modes and the utility of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), microfluidic systems like BioFlux™, and engineered heart tissues in enhancing early-stage drug safety assessments.

View Article and Find Full Text PDF

Single-cell surface-enhanced Raman scattering (SERS) has emerged as a powerful tool for precision medicine owing to its label-free detection, ultrasensitivity, and unique molecular fingerprinting. Unlike conventional bulk analysis, it enables detailed characterization of cellular heterogeneity, with particular promise in circulating tumor cell (CTC) identification, tumor microenvironment (TME) metabolic profiling, subcellular imaging, and drug sensitivity assessment. Coupled with microfluidic droplet systems, SERS supports high-throughput single-cell analysis and multiparametric screening, while integration with complementary modalities such as fluorescence microscopy and mass spectrometry enhances temporal and spatial resolution for monitoring live cells.

View Article and Find Full Text PDF

Microgel-Crosslinked, thermo- and mechano- dual Responsive, Ketoprofen-Loaded hydrogels with high mechanical properties and rapid response.

Int J Pharm

September 2025

Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Instit

Smart hydrogels have advanced rapidly in recent years. However, systems responsive to a single stimulus are typically triggered by specific cues, limiting their adaptability in complex and dynamic biological environments. To overcome this limitation, this study developed a dual-responsive hydrogel sensitive to both temperature and mechanical stress.

View Article and Find Full Text PDF