Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Thyroid hormone (TH) metabolism and cellular TH action are influenced by ageing. To investigate the response to thyroxine (T4) overtreatment, a kinetic study was conducted in young and aged mice with chronic hyperthyroidism and hormone withdrawal. Five and 22 months old male mice were treated with T4 or PBS over 5 weeks, followed by observation for up to 12 days. Serial analysis was performed for thyroid function parameters, transcript levels of TH target genes, deiodinase type 1 (DIO1) activity as well as serum lipids at 12, 24, 72, 144, 216, and 288 h after cessation of T4 administration. Higher FT3 concentrations and higher renal DIO1 activities were noted in aged mice 12 h after T4 withdrawal and marked thyroid-stimulating hormone elevation was found in aged mice after 12 days compared to respective controls. A biphasic expression pattern occurred for TH target genes in all organs and a hypothyroid organ state was observed at the end of the study, despite normalization of TH serum concentrations after 72 h. In line with this, mirror-image kinetics were detected for serum cholesterol and triglycerides in aged and young mice. Recovery from TH overtreatment in mice involves short- and medium-term adaption of TH metabolism on systemic and organ levels. Increased renal DIO1 activity may contribute to higher T3 concentrations and prolonged thyrotoxicosis followed by hypothyroidism in an aged-mouse organism. Translation of these findings in the clinical setting seems warranted and may lead to better management of hyperthyroidism and prevention of T4 overtreatment in aged patients.

Download full-text PDF

Source
http://dx.doi.org/10.1530/JME-21-0109DOI Listing

Publication Analysis

Top Keywords

aged mice
12
systemic organ
8
target genes
8
dio1 activity
8
renal dio1
8
mice
6
aged
5
age-dependent response
4
overtreatment
4
response overtreatment
4

Similar Publications

Characterization of the extrinsic and intrinsic signatures and therapeutic vulnerability of small cell lung cancers.

Signal Transduct Target Ther

September 2025

State Key Laboratory of Molecular Oncology & Department of Medical Oncology & Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Small-cell lung cancer (SCLC), an aggressive neuroendocrine tumor strongly associated with exposure to tobacco carcinogens, is characterized by early dissemination and dismal prognosis with a five-year overall survival of less than 7%. High-frequency gain-of-function mutations in oncogenes are rarely reported, and intratumor heterogeneity (ITH) remains to be determined in SCLC. Here, via multiomics analyses of 314 SCLCs, we found that the ASCL1/MKI67 and ASCL1/CRIP2 clusters accounted for 74.

View Article and Find Full Text PDF

In recent years, there has been a rapid increase in the incidence of thyroid carcinoma (TC). Our study focuses on the regulatory effect of circular RNAs on metabolism of TC, aiming to provide new insights into the mechanisms of progression and a potential therapeutic target for TC. In this study, we identified high expression levels of circPSD3 in TC tissues through RNA sequencing.

View Article and Find Full Text PDF

Aging correlates with alterations in metabolism and neuronal function, which affect the overall regulation of energy homeostasis. Recent studies have highlighted that protein O-GlcNAcylation, a common post-translational modification regulating metabolic function, is linked to aging. In particular, elevated O-GlcNAcylation increases energy expenditure, potentially due to alterations in the neuronal function of the hypothalamic arcuate nucleus (ARC), a key brain region for energy balance and metabolic processes.

View Article and Find Full Text PDF

Impaired muscle regrowth in aging is underpinned by reduced pro-inflammatory macrophage function and subsequently impaired muscle cellular remodeling. Macrophage phenotype is metabolically controlled through TCA intermediate accumulation and activation of HIF1A. We hypothesized that transient hypoxia following disuse in old mice would enhance macrophage metabolic inflammatory function thereby improving muscle cellular remodeling and recovery.

View Article and Find Full Text PDF

Synovial MS4A4A correlates with inflammation and counteracts response to corticosteroids in arthritis.

Proc Natl Acad Sci U S A

September 2025

Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom.

MS4A4A belongs to the MS4A tetraspan protein superfamily and is selectively expressed by the monocyte-macrophage lineage. In this study, we aimed to evaluate the role of MS4A4A+ macrophages in rheumatoid arthritis (RA) pathogenesis and response to treatment. RNA sequencing and immunohistochemistry of synovial samples from either early treatment-naïve or active chronic RA patients showed that MS4A4A expression positively correlated with synovial inflammation.

View Article and Find Full Text PDF