98%
921
2 minutes
20
Epoxy with low viscosity and good fluidity before curing has been widely applied in the packaging of electronic and electrical devices. Nevertheless, its low flexibility and toughness renders the requirement of property improvement before it can be widely acceptable in dynamic loading applications. This study investigates the possible use of 2-hydroxyethyl methacrylate (HEMA) toughening agent and nano-powders, such as alumina, silicon dioxide, and carbon black, to form epoxy composites for dynamic property improvement. Considering the different combinations of the nano-powders and HEMA toughener, the Taguchi method with an L9 orthogonal array was adopted for composition optimization. The dynamic storage modulus and loss tangent of the prepared specimen were measured by employing a dynamic mechanical analyzer. With polynomial regression, the curve-fitted relationships of the glass transition temperature and storage modulus with respect to the design factors were obtained. It was found that although the raise in the weight fraction of nano-powders was beneficial in increasing the rigidity of the epoxy composite, an optimal amount of HEMA toughener existed for its best damping improvement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347207 | PMC |
http://dx.doi.org/10.3390/ma14154193 | DOI Listing |
RSC Adv
August 2025
State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
Cycloaliphatic epoxy resin (CEP) is a promising candidate for rigid housings in high-voltage composite insulators due to its superior hardness, water resistance, and interfacial adhesion compared with conventional high-temperature vulcanized silicone rubber (HTV-SR). However, the long-term insulation degradation mechanisms of CEP under corona discharge are still not fully understood. In this study, CEP, HTV-SR, and glass fiber-reinforced epoxy (GFRP) were subjected to AC corona aging using a multi-needle plate electrode.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
August 2025
Department of Clinical Laboratory Medicine, The Fourth People's Hospital of Nanhai District of Foshan City, 528211 Foshan, Guangdong, China.
Background: Neonatal jaundice affects up to 60% of newborns, with pathological cases frequently associated with impaired bilirubin metabolism and gut microbiota dysbiosis. Although evidence implicates gut microbiota in bilirubin metabolism, the precise mechanisms remain incompletely characterized. This study investigated treatment-associated changes in gut microbiota composition, fecal metabolites, and liver function in neonates with hyperbilirubinemia.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Key Lab of Rubber-Plastics, Ministry of Education/Shandong Provincial Key, Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China. Electronic address:
A dynamically crosslinked network VEC (vulcanized ESO and CA) was synthesized in situ via zinc acetate-catalyzed epoxy ring-opening between epoxidized soybean oil (ESO) and anhydrous citric acid (CA), then incorporated into polylactic acid (PLA)/polybutylene adipate terephthalate (PBAT) blends to enhance interfacial compatibility. The dynamic ester-exchange network acted as an intermediate phase, improving the integration of the flexible PBAT phase within the rigid PLA matrix. VEC content critically influenced mechanical properties, with in-situ crosslinking during dynamic vulcanization enhancing chain interactions and blend homogeneity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Engineering Ceramic Center, Korea Institute of Ceramic Engineering & Technology (KICET), Icheon 17303, Republic of Korea.
With the rapid advancement of space technologies, ensuring the reliable performance of electronic systems in extreme space environments has become increasingly critical. However, conventional polymeric materials used in electronic device packaging suffer from insufficient neutron shielding capability and poor thermal stability, requiring improved effectiveness in protecting sensitive components from high-energy radiation and drastic temperature fluctuations. In this study, we report a novel multilayered composite consisting of boron nitride microbridle (BNMR) and epoxy resin.
View Article and Find Full Text PDFLangmuir
September 2025
College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China.
Self-healing protective coatings, key to anticorrosion and substrate longevity, are a hot topic in materials science. We synthesized a novel self-healing epoxy coating (GPN/EP) by spraying. It is a graphene oxide (GO)/metal-organic framework (PCN-222) epoxy composite with a sodium zinc molybdate (NZM) inhibitor and is applied to steel substrates.
View Article and Find Full Text PDF