Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Soil seed banks represent reservoirs of diversity in the soil that may increase resilience of communities to global changes. Two global change factors that can dramatically alter the composition and diversity of aboveground communities are nutrient enrichment and increased rainfall. In a full-factorial nutrient and rainfall addition experiment in an annual Californian grassland, we asked whether shifts in aboveground composition and diversity were reflected in belowground seed banks. Nutrient and rainfall additions increased exotic and decreased native abundances, while rainfall addition increased exotic richness, both in aboveground communities and seed banks. Under nutrient addition, forbs and short-statured plants were replaced by grasses and tall-statured species, both above and below ground, and whole-community responses to the treatments were similar. Structural equation models indicated that especially nutrient addition effects on seed banks were largely indirect via aboveground communities. However, rainfall addition also had a direct negative effect on native species richness and abundance of species with high specific leaf area (SLA) in seed banks, showing that seed banks are sensitive to the direct effects of temporary increases in rainfall. Our findings highlight the vulnerability of seed banks in annual, resource-poor grasslands to shifts in compositional and trait changes in aboveground communities and show how invasion of exotics and depletion of natives are critical for these above-belowground compositional shifts. Our findings suggest that seed banks have limited potential to buffer resource-poor annual grasslands from the community changes caused by resource enrichment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ecy.3512DOI Listing

Publication Analysis

Top Keywords

seed banks
36
aboveground communities
16
rainfall addition
12
seed
9
banks
9
global changes
8
composition diversity
8
nutrient rainfall
8
banks nutrient
8
increased exotic
8

Similar Publications

Weeds are one of the major constraints for wheat productivity, causing significant yield losses worldwide. While chemical control is the most used practice to overcome weed damage, its efficacy is challenged by increasing weed resistance to most used herbicides, which is an expanding phenomenon caused by herbicide overuse/misuse. Modern wheat varieties are less able to perceive the presence of weeds than old varieties and are therefore less competitive against them and require chemical control to ensure adequate yields.

View Article and Find Full Text PDF

Premise: Humans have used fire to manage landscapes for millennia, but this use of fire is declining in many ecosystems. Understanding how plants respond to these changes is key to predicting ecosystem resilience and impacts on services such as biodiversity and carbon sequestration. However, many ecosystems lack data on plant fire responses.

View Article and Find Full Text PDF

Okra is a nutritious vegetable of global significance. This crop serves various purposes and presents numerous untapped opportunities. However, several challenges hinder Africa from fully harnessing okra's economic and nutritional benefits, including pest and disease pressures, salinity and cold stress, weak seed systems, insufficient market knowledge, and a lack of value addition.

View Article and Find Full Text PDF

Plants, including halophytes (salt-tolerant) and glycophytes (salt-sensitive), have developed diverse molecular mechanisms and morphological adaptations to survive in saline environments. The cellular components and molecular processes for salinity sensing and stress tolerance have been extensively identified in glycophytes, but not so with halophytes. Salinity sensing requires the perception of a major soil salinity contributor, that is, sodium ions (Na).

View Article and Find Full Text PDF

The pioneering zoned desertification control mode of desert-crossing highway grids in Ongniud Banner has received widespread societal acclaim. However, the principle, technology, and benefits of this mode have not been systematically summarized, which affects its cognition and promotion in the field of desertification control. We synthesized multi-source data from field investigations, interview and literature to elucidate design principle of the zoned desertification control mode of desert-crossing highway grids, configuration characteristics of "three belts" (dune-fixing and forestation belt, enclosure conservation belt, and aerial seeding belt), vegetation and soil restoration processes, and influences on production and living.

View Article and Find Full Text PDF