98%
921
2 minutes
20
Silicon (Si)-mediated growth promotion of various grasses is well documented. In the present study, Si-induced changes in maize shoot growth and its underlying mechanisms were studied. Maize plants were grown with various concentrations of Si (0-3 mM) in the nutrient solution. Silicon nutrition improved plant expansion growth. Silicon-supplied maize plants (0.8 and 1.2 mM) showed higher plant height and leaf area compared to no-Si amended plants. It was assumed that Si-induced expansion growth was due to positive Si effects on plasma membrane (PM) H-ATPase. In this context, western blot analysis revealed an increase in PM H-ATPase abundance by 77% under Si nutrition. However, in vitro measurements of enzyme activities showed no significant effect on apoplast pH, proton pumping, passive H efflux and enzyme kinetics such as K, V, and activation energy. Further, these results were confirmed by in vivo ratiometric analysis of apoplastic pH, which showed non-significant changes upon Si supply. In contrast, 1 mM Si altered the relative transcripts of specific PM H-ATPase isoforms. Silicon application resulted in a significant decrease of MHA3, and this decrease in transcription seems to be compensated by an increased concentration of H-ATPase protein. From these results, it can be concluded that changes in cell wall composition and PM H-ATPase may be responsible for Si-mediated growth improvement in maize.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2021.07.016 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug De
Proliferative retinopathy is a leading cause of irreversible blindness in humans; however, the molecular mechanisms behind the immune cell-mediated retinal angiogenesis remain poorly elucidated. Here, using single-cell RNA sequencing in an oxygen-induced retinopathy (OIR) model, we identified an enrichment of sorting nexin (SNX)-related pathways, with SNX3, a member of the SNX family that is involved in endosomal sorting and trafficking, being significantly upregulated in the myeloid cell subpopulations of OIR retinas. Immunostaining showed that SNX3 expression is markedly increased in the retinal microglia/macrophages of mice with OIR, which is mainly located within and around the neovascular tufts.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
September 2025
Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan.
S100 protein family members S100A8 and S100A9 function primarily as a heterodimer complex (S100A8/A9) in vivo. This complex has been implicated in various cancers, including gastric cancer (GC). Recent studies suggest that these proteins play significant roles in tumor progression, inflammation, and metastasis.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran.
Background: Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. The tumor microenvironment (TME), particularly the interactions between endothelial cells and cancer-associated fibroblasts (CAFs), plays a pivotal role in promoting tumor growth, angiogenesis, oxidative stress, and therapy resistance. The HUVEC-fibroblast co-culture model closely mimics stromal-endothelial interactions observed in CRC, enabling mechanistic insights not achievable in monocultures.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
September 2025
Department of Microbiology, University of Georgia, Athens, GA, 30602, USA.
While PGPB have historically been applied in agriculture, their formal recognition in the last century has driven intensive research into their role as sustainable tools for improving crop yield and stress tolerance. As they are primarily sourced from wild or native environments, the widespread enthusiasm has led to heightened expectations surrounding their potential, often based on the assumption that biological solutions are inherently safer and more effective than synthetic inputs. However, despite their popularity, increasing reports of inconsistent or limited performance under real-world, field conditions have raised critical questions about their credibility as biofertilizers and biocontrol agents.
View Article and Find Full Text PDFCarcinogenesis
September 2025
Department of Gastroenterology, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, China.
Aurora kinase A (AURKA) is a serine/threonine kinase that plays a critical role in cell cycle regulation, particularly during mitosis. Recent studies have identified AURKA as an oncogene overexpressed in various cancers, including gastric cancer (GC). This review summarizes the molecular mechanisms by which AURKA contributes to GC pathogenesis, including its roles in cell proliferation, apoptosis inhibition, epithelial-mesenchymal transition (EMT), and cancer stemness.
View Article and Find Full Text PDF