Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Severe coronavirus disease 2019 (COVID-19) has been associated with T cell lymphopenia, but no causal effect of T cell deficiency on disease severity has been established. To investigate the specific role of T cells in recovery from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, we studied rhesus macaques that were depleted of either CD4, CD8, or both T cell subsets prior to infection. Peak virus loads were similar in all groups, but the resolution of virus in the T cell-depleted animals was slightly delayed compared to that in controls. The T cell-depleted groups developed virus-neutralizing antibody responses and class switched to IgG. When reinfected 6 weeks later, the T cell-depleted animals showed anamnestic immune responses characterized by rapid induction of high-titer virus-neutralizing antibodies, faster control of virus loads, and reduced clinical signs. These results indicate that while T cells play a role in the recovery of rhesus macaques from acute SARS-CoV-2 infections, their depletion does not induce severe disease, and T cells do not account for the natural resistance of rhesus macaques to severe COVID-19. Neither primed CD4 nor CD8 T cells appeared critical for immunoglobulin class switching, the development of immunological memory, or protection from a second infection. Patients with severe COVID-19 often have decreased numbers of T cells, a cell type important in fighting most viral infections. However, it is not known whether the loss of T cells contributes to severe COVID-19 or is a consequence of it. We studied rhesus macaques, which develop only mild COVID-19, similar to most humans. Experimental depletion of T cells slightly prolonged their clearance of virus, but there was no increase in disease severity. Furthermore, they were able to develop protection from a second infection and produced antibodies capable of neutralizing the virus. They also developed immunological memory, which allows a much stronger and more rapid response upon a second infection. These results suggest that T cells are not critical for recovery from acute SARS-CoV-2 infections in this model and point toward B cell responses and antibodies as the essential mediators of protection from re-exposure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8406331PMC
http://dx.doi.org/10.1128/mBio.01503-21DOI Listing

Publication Analysis

Top Keywords

rhesus macaques
20
acute sars-cov-2
12
sars-cov-2 infections
12
severe covid-19
12
second infection
12
recovery acute
8
anamnestic immune
8
immune responses
8
macaques severe
8
disease severity
8

Similar Publications

An HIV fusion-inhibitory lipopeptide provides robust post-exposure prophylaxis and prevents viral reservoir seeding in macaques.

Cell Rep

September 2025

National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Center for

LP-98 is a lipopeptide HIV fusion inhibitor showing strong treatment and pre-exposure prophylaxis efficacies in non-human primates. In this study, we further characterized its pharmacokinetics, long-lasting antiviral activity, and post-exposure prophylaxis (PEP) efficacy using 62 macaques. In cynomolgus macaques, LP-98 achieved high concentrations (C) with a half-life (T) of ∼31 h, and sustained an effective therapeutic concentration for two weeks post-injection.

View Article and Find Full Text PDF

Advances in brain stimulation have made it possible to target smaller and smaller regions for electromagnetic stimulation, in the hopes of producing increasingly focal neural effects. However, the brain is extensively interconnected, and the neurons comprising those connections may themselves be particularly susceptible to neurostimulation. Here, we test this hypothesis by identifying long-range projections in single-unit recordings from nonhuman primates receiving transcranial alternating current stimulation.

View Article and Find Full Text PDF

The vast majority of persons living with HIV-1 who discontinue antiretroviral therapy (ART) demonstrate viral rebound, but the tissue-level events that lead to rebound viremia are poorly understood. Here we report the origin, dynamics, and correlates of viral rebound in 16 rhesus macaques (RMs) infected with molecularly barcoded SIVmac239M, treated with ART for 70 weeks, and necropsied on day 12 after ART discontinuation. Barcode analysis of plasma following ART discontinuation identified 1 to 38 rebounding barcode-defined viral lineages per animal, with 1 to 4 rebounding lineages contributing to first measurable rebound viremia.

View Article and Find Full Text PDF

The main inhibitory neurotransmitter in the central nervous system is γ-aminobutyric acid (GABA). GABA transporter type 1 (GAT-1) is the principal GABA transporter in the brain, and it plays a crucial role in modulating GABA signaling. Its potential role in several neuropsychiatric disorders makes it an important target to study.

View Article and Find Full Text PDF

The gut microbiota of macaques, highly homologous to humans in biological characteristics and metabolic functions, serves as an ideal model for studying the mechanisms of human intestinal diseases and therapeutic approaches. A comprehensive characterization of the macaque gut microbiota provides unique insights into human health and disease. This study employs metagenomic sequencing to assess the gut microbiota of wild across various ages, sexes, and physiological states.

View Article and Find Full Text PDF