Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose Of Review: Myopia is one of the leading causes of visual impairment, with a projected increase in prevalence globally. One potential approach to address myopia and its complications is early detection and treatment. However, current healthcare systems may not be able to cope with the growing burden. Digital technological solutions such as artificial intelligence (AI) have emerged as a potential adjunct for myopia management.

Recent Findings: There are currently four significant domains of AI in myopia, including machine learning (ML), deep learning (DL), genetics and natural language processing (NLP). ML has been demonstrated to be a useful adjunctive for myopia prediction and biometry for cataract surgery in highly myopic individuals. DL techniques, particularly convoluted neural networks, have been applied to various image-related diagnostic and predictive solutions. Applications of AI in genomics and NLP appear to be at a nascent stage.

Summary: Current AI research is mainly focused on disease classification and prediction in myopia. Through greater collaborative research, we envision AI will play an increasingly critical role in big data analysis by aggregating a greater variety of parameters including genomics and environmental factors. This may enable the development of generalizable adjunctive DL systems that could help realize predictive and individualized precision medicine for myopic patients.

Download full-text PDF

Source
http://dx.doi.org/10.1097/ICU.0000000000000791DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
myopia
7
intelligence myopia
4
myopia current
4
current future
4
future trends
4
trends purpose
4
purpose review
4
review myopia
4
myopia leading
4

Similar Publications

Background: In-hospital cardiac arrest (IHCA) remains a public health conundrum with high morbidity and mortality rates. While early identification of high-risk patients could enable preventive interventions and improve survival, evidence on the effectiveness of current prediction methods remains inconclusive. Limited research exists on patients' prearrest pathophysiological status and predictive and prognostic factors of IHCA, highlighting the need for a comprehensive synthesis of predictive methodologies.

View Article and Find Full Text PDF

Background: The ability to access and evaluate online health information is essential for young adults to manage their physical and mental well-being. With the growing integration of the internet, mobile technology, and social media, young adults (aged 18-30 years) are increasingly turning to digital platforms for health-related content. Despite this trend, there remains a lack of systematic insights into their specific behaviors, preferences, and needs when seeking health information online.

View Article and Find Full Text PDF

Artificial intelligence (AI) is transforming many fields, including healthcare and medicine. In biomarker discovery, AI algorithms have had a profound impact, thanks to their ability to derive insights from complex high-dimensional datasets and integrate multi-modal datatypes (such as omics, electronic health records, imaging or sensor and wearable data). However, despite the proliferation of AI-powered biomarkers, significant hurdles still remain in translating them to the clinic and driving adoption, including lack of population diversity, difficulties accessing harmonised data, costly and time-consuming clinical studies, evolving AI regulatory frameworks and absence of scalable diagnostic infrastructure.

View Article and Find Full Text PDF

Purpose: To evaluate inter-grader variability in posterior vitreous detachment (PVD) classification in patients with epiretinal membrane (ERM) and macular hole (MH) on spectral-domain optical coherence tomography (SD-OCT) and identify challenges in defining a reliable ground truth for artificial intelligence (AI)-based tools.

Methods: A total of 437 horizontal SD-OCT B-scans were retrospectively selected and independently annotated by six experienced ophthalmologists adopting four categories: 'full PVD', 'partial PVD', 'no PVD', and 'ungradable'. Inter-grader agreement was assessed using pairwise Cohen's kappa scores.

View Article and Find Full Text PDF

[Ai's use in health care and informed consent].

Cuad Bioet

September 2025

Universidad de A Coruña. Facultad de Derecho, Campus de Elviña, s/n, 15071, A Coruña. 981 167000 ext. 1640

The implications of the use of artificial intelligence (AI) in many areas of human existence compels us to reflect on its ethical relevance. This paper addresses the signification of its use in healthcare for patient informed consent. To this end, it first proposes an understanding of AI, as well as the basis for informed consent.

View Article and Find Full Text PDF