Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Cytolethal Distending Toxin (CDT) is a bacterial genotoxin produced by pathogenic bacteria causing major foodborne diseases worldwide. CDT activates the DNA Damage Response and modulates the host immune response, but the precise relationship between these outcomes has not been addressed so far. Here, we show that chronic exposure to CDT in HeLa cells or mouse embryonic fibroblasts promotes a strong type I interferon (IFN) response that depends on the cytoplasmic DNA sensor cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS) through the recognition of micronuclei. Indeed, despite active cell cycle checkpoints and in contrast to other DNA damaging agents, cells exposed to CDT reach mitosis where they accumulate massive DNA damage, resulting in chromosome fragmentation and micronucleus formation in daughter cells. These mitotic phenotypes are observed with CDT from various origins and in cancer or normal cell lines. Finally, we show that CDT exposure in immortalized normal colonic epithelial cells is associated to cGAS protein loss and low type I IFN response, implying that CDT immunomodulatory function may vary depending on tissue and cell type. Thus, our results establish a direct link between CDT-induced DNA damage, genetic instability and the cellular immune response that may be relevant in the context of natural infection associated to chronic inflammation or carcinogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8429409PMC
http://dx.doi.org/10.1007/s00018-021-03902-xDOI Listing

Publication Analysis

Top Keywords

dna damage
12
chronic exposure
8
cytolethal distending
8
distending toxin
8
cdt
8
toxin cdt
8
type interferon
8
immune response
8
ifn response
8
response
6

Similar Publications

Anaphase-promoting complex/cyclosome (APC/C) regulates the cell cycle by destruction of target proteins ubiquitination. However, understanding the control of APC/C has remained elusive. We identify APC2, the catalytic core subunit of APC/C, as a binding partner of active regulator of SIRT1 (AROS).

View Article and Find Full Text PDF

Luteolin Enhances Anticancer Effects of PX-478 during Hypoxic Response in Metastatic Breast Cancer Cells.

Anticancer Agents Med Chem

September 2025

Molecular Biology and Genetics Department, Faculty of Arts and Science, Burdur Mehmet Akif Ersoy University, Burdur, 15100, Turkey.

Introduction: The presence of severe hypoxic stress can drive tumor growth, angiogenesis, and metastatic characteristics via up-regulated hypoxia-inducible factor 1-alpha (HIF-1α). Hence, targeting HIF-1α is considered a promising strategy, as increased HIF-1α activity is a key factor in the aggressive phenotype of malignancies. In this study, we aimed to investigate the anti-cancer effects of several flavonoids, both single and in combination with PX-478, in breast cancer cell lines.

View Article and Find Full Text PDF

Enantioselective hepatotoxicity of rac- epoxiconazole and epoxiconazole enantiomers in lizards (Eremias argus).

J Hazard Mater

September 2025

Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China. Electronic address:

Epoxiconazole (EPX) is widely applied to control various fungal diseases in crops. However, the toxicological effects of EPX on reptiles remain unknown, especially at the enantiomer level. In this study, lizards were repeatedly exposed to rac-EPX, (+)-EPX, and (-)-EPX at doses of 10 and 100 mg/kg bw for 21 days.

View Article and Find Full Text PDF

PARP inhibitors play a crucial role in cancer therapy, with PARP7 emerging as a promising target for immunotherapy by modulating the cGAS-STING pathway. In this study, the piperazine ring of Olaparib was replaced with a bicyclo[1.1.

View Article and Find Full Text PDF

Berberine (BBR) is an isoquinoline alkaloid with a variety of biological activities, including anti-microbial and anti-tumoral activities. However, the cellular targets of BBR and the roles of BBR in the radiosensitivity of breast cancer cells are not well defined. In this study, we investigated the effects of BBR on the radiosensitivity of BT549 triple-negative breast cancer cells.

View Article and Find Full Text PDF