98%
921
2 minutes
20
The human angiotensin-converting enzyme 2 acts as the host cell receptor for SARS-CoV-2 and the other members of the family SARS-CoV-1 and HCoV-NL63. Here, we report the biophysical properties of the SARS-CoV-2 spike variants D614G, B.1.1.7, B.1.351, and P.1 with affinities to the ACE2 receptor and infectivity capacity, revealing weaknesses in the developed neutralizing antibody approaches. Furthermore, we report a preclinical characterization package for a soluble receptor decoy engineered to be catalytically inactive and immunologically inert, with broad neutralization capacity, that represents an attractive therapeutic alternative in light of the mutational landscape of COVID-19. This construct efficiently neutralized four SARS-CoV-2 variants of concern. The decoy also displays antibody-like biophysical properties and manufacturability, strengthening its suitability as a first-line treatment option in prophylaxis or therapeutic regimens for COVID-19 and related viral infections. Mutational drift of SARS-CoV-2 risks rendering both therapeutics and vaccines less effective. Receptor decoy strategies utilizing soluble human ACE2 may overcome the risk of viral mutational escape since mutations disrupting viral interaction with the ACE2 decoy will by necessity decrease virulence, thereby preventing meaningful escape. The solution described here of a soluble ACE2 receptor decoy is significant for the following reasons: while previous ACE2-based therapeutics have been described, ours has novel features, including (i) mutations within ACE2 to remove catalytical activity and systemic interference with the renin/angiotensin system, (ii) abrogated FcγR engagement, reduced risk of antibody-dependent enhancement of infection, and reduced risk of hyperinflammation, and (iii) streamlined antibody-like purification process and scale-up manufacturability indicating that this receptor decoy could be produced quickly and easily at scale. Finally, we demonstrate that ACE2-based therapeutics confer a broad-spectrum neutralization potency for ACE2-tropic viruses, including SARS-CoV-2 variants of concern in contrast to therapeutic MAb.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8432736 | PMC |
http://dx.doi.org/10.1128/JVI.00685-21 | DOI Listing |
Chem Sci
August 2025
Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University Shanghai 200240 China
Predicting Antibody-Antigen (Ab-Ag) docking and structure-based design represent significant long-term and therapeutically important challenges in computational biology. We present SAGERank, a general, configurable deep learning framework for antibody design using Graph Sample and Aggregate Networks. SAGERank successfully predicted the majority of epitopes in a cancer target dataset.
View Article and Find Full Text PDFEBioMedicine
September 2025
Cancer Centre, The First Hospital of Jilin University, Changchun, Jilin, 130021, China; Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, 130021, China; Institute of Translational Medicine, Key Laboratory of Organ Regeneration and Transplantation of M
Background: Enterovirus D68 (EV-D68) is a prominent non-polio enterovirus known to cause severe respiratory infections and poliomyelitis-like illnesses in children. Recently, we identified MFSD6 as a receptor for EV-D68, providing a potential target for blocking viral entry into cells. This study aimed to develop an MFSD6-based decoy receptor to neutralise EV-D68 and elucidate its mechanism of action.
View Article and Find Full Text PDFBlood Vessel Thromb Hemost
August 2025
Hematology, Thrombosis and Hemostasis Research Program, Versiti Blood Research Institute, Wauwatosa, WI.
Unopposed platelet activation can be associated with pathologic thrombosis. An intact growth arrest-specific gene 6 (GAS6)/Mer receptor tyrosine kinase (MERTK) signaling pathway contributes importantly to potentiating platelet activation triggered by molecular agonists ex vivo and thrombus stabilization in vivo. We describe, herein, the inhibition of platelet function and stable thrombus formation conferred by iMer, a naturally occurring MERTK splice variant, that acts as a GAS6 decoy receptor and decreases phosphorylation of MERTK.
View Article and Find Full Text PDFEur J Immunol
September 2025
IRCCS Humanitas Research Hospital, Milan, Italy.
IL-1 family members and their signaling receptors are key drivers of inflammation in sterile or infectious conditions, as well as polarization of the innate and adaptive immunity. Deregulated or excessive activation of the IL-1 system is associated with detrimental inflammatory reactions. Beside signaling receptors, IL-1-family receptors comprise decoy or negative regulatory receptors, which regulate cell activation mediated by IL-1 family ligands.
View Article and Find Full Text PDFDev Comp Immunol
September 2025
Department of Aquatic Life Medicine, Gangneung-Wonju National University, Gangneung, Korea. Electronic address:
TNFRSF6B, commonly referred to as decoy receptor 3, interacts with TNFSF6, TNFSF14, and TNFSF15, thereby imparting anti-apoptotic and anti-inflammatory properties. This study identifies two isoforms, TNFRSF6B.1 and TNFRSF6B.
View Article and Find Full Text PDF