Publications by authors named "Mathieu Ferrari"

Patients with relapsed/refractory (r/r) T cell acute lymphoblastic leukemia (T-ALL) have a dismal prognosis, highlighting the urgent need for effective therapies. Chimeric antigen receptor (CAR)-T cell approaches targeting pan-T cell antigens may be limited by T cell aplasia and fratricide, necessitating "rescue" allogeneic hematopoietic stem cell transplantation. In this study, we identify CD21, a pan-B cell marker, as a promising target for T-ALL immunotherapy.

View Article and Find Full Text PDF

Relapsed/refractory peripheral T cell lymphomas (PTCLs) are aggressive tumors with a poor prognosis. Unlike B cell lymphomas, treatment of PTCL has not benefited from advances in immunotherapy. This is largely due to a lack of suitable target antigens that discriminate malignant from normal T cells, thus avoiding severe immunosuppression consequent to depletion of the entire T cell compartment.

View Article and Find Full Text PDF

The diagnosis of leukemic T-cell malignancies is often challenging, due to overlapping features with reactive T-cells and limitations of currently available T-cell clonality assays. Recently developed therapeutic antibodies specific for the mutually exclusive T-cell receptor constant β chain (TRBC)1 and TRBC2 isoforms provide a unique opportunity to assess for TRBC-restriction as a surrogate of clonality in the flow cytometric analysis of T-cell neoplasms. To demonstrate the diagnostic utility of this approach, we studied 164 clinical specimens with (60) or without (104) T-cell neoplasia, in addition to 39 blood samples from healthy donors.

View Article and Find Full Text PDF
Article Synopsis
  • Peripheral T cell lymphomas are aggressive cancers with a poor prognosis and pose challenges for immunotherapy due to the lack of distinguishing antigens between healthy and cancerous cells.
  • Researchers have used advanced computational biology to develop a TRBC2-specific antibody (KFN), which, alongside a previously created TRBC1-specific antibody (Jovi-1), offers a way to target a wider range of T cell malignancies.
  • The combination of these antibodies enables the creation of specialized chimeric antigen receptor-T cells that may prove effective in treating various T cell cancers in preclinical tests.
View Article and Find Full Text PDF

A versatile, safe, and effective small-molecule control system is highly desirable for clinical cell therapy applications. Therefore, we developed a two-component small-molecule control system based on the disruption of protein-protein interactions using minocycline, an FDA-approved antibiotic with wide availability, excellent biodistribution, and low toxicity. The system comprises an anti-minocycline single-domain antibody (sdAb) and a minocycline-displaceable cyclic peptide.

View Article and Find Full Text PDF

Background: We used a proliferating ligand (APRIL) to construct a ligand-based third generation chimeric antigen receptor (CAR) able to target two myeloma antigens, B-cell maturation antigen (BCMA) and transmembrane activator and CAML interactor.

Methods: The APRIL CAR was evaluated in a Phase 1 clinical trial (NCT03287804, AUTO2) in patients with relapsed, refractory multiple myeloma. Eleven patients received 13 doses, the first 15×10 CARs, and subsequent patients received 75,225,600 and 900×10 CARs in a 3+3 escalation design.

View Article and Find Full Text PDF

SHP1 and SHP2 are SH2 domain-containing proteins which have inhibitory phosphatase activity when recruited to phosphorylated ITIMs and ITSMs on inhibitory immune receptors. Consequently, SHP1 and SHP2 are key proteins in the transmission of inhibitory signals within T cells, constituting an important point of convergence for diverse inhibitory receptors. Therefore, SHP1 and SHP2 inhibition may represent a strategy for preventing immunosuppression of T cells mediated by cancers hence improving immunotherapies directed against these malignancies.

View Article and Find Full Text PDF

CAR T cells recognizing CD19 effectively treat relapsed and refractory B-ALL and DLBCL. However, CD19 loss is a frequent cause of relapse. Simultaneously targeting a second antigen, CD22, may decrease antigen escape, but is challenging: its density is approximately 10-fold less than CD19, and its large structure may hamper immune synapse formation.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cells targeting CD19 or CD22 have shown remarkable activity in B cell acute lymphoblastic leukemia (B-ALL). The major cause of treatment failure is antigen downregulation or loss. Dual antigen targeting could potentially prevent this, but the clinical safety and efficacy of CAR T cells targeting both CD19 and CD22 remain unclear.

View Article and Find Full Text PDF

The use of recombinant lentivirus pseudotyped with the coronavirus Spike protein of SARS-CoV-2 would circumvent the requirement of biosafety-level 3 (BSL-3) containment facilities for the handling of SARS-CoV-2 viruses. Herein, we describe a fast and reliable protocol for the transient production of lentiviruses pseudotyped with SARS-CoV-2 Spike (CoV-2 S) proteins and green fluorescent protein (GFP) reporters. The virus titer is determined by the GFP reporter (fluorescent) expression with a flow cytometer.

View Article and Find Full Text PDF

The SARS-CoV-2 receptor angiotensin converting enzyme 2 (ACE2) was previously engineered into a high affinity tetravalent format (ACE2-Fc-TD) that is a potential decoy protein in SARS-CoV-2 infection.We report that this protein shows greatly enhanced binding to SARS-CoV-2 spike proteins of the SARS-CoV-2 variants of concern B.1.

View Article and Find Full Text PDF

The human angiotensin-converting enzyme 2 acts as the host cell receptor for SARS-CoV-2 and the other members of the family SARS-CoV-1 and HCoV-NL63. Here, we report the biophysical properties of the SARS-CoV-2 spike variants D614G, B.1.

View Article and Find Full Text PDF
Article Synopsis
  • Biologic drugs, particularly anti-TNF therapies, are the primary treatment for rheumatoid arthritis, but they face challenges like inconsistent effectiveness, risk of infections, and high costs.
  • A new bispecific antibody (BsAb) was created to target the inflamed joint tissues specifically while neutralizing TNFα, demonstrating effectiveness similar to the existing adalimumab drug.
  • This BsAb showed improved tissue targeting and maintained high drug levels in the affected area for longer periods, resulting in better therapeutic outcomes and potential benefits for other biologic treatments.
View Article and Find Full Text PDF

Phage display technology in combination with next-generation sequencing (NGS) currently is a state-of-the-art method for the enrichment and isolation of monoclonal antibodies from diverse libraries. However, the current NGS methods employed for sequencing phage display libraries are limited by the short contiguous read lengths associated with second-generation sequencing platforms. Consequently, the identification of antibody sequences has conventionally been restricted to individual antibody domains or to the analysis of single domain binding moieties such as camelid VHH or cartilaginous fish IgNAR antibodies.

View Article and Find Full Text PDF

Antibody phage display is a powerful platform for discovery of clinically applicable high affinity monoclonal antibodies against a broad range of targets. Libraries generated from immunized animals offer the advantage of in vivo affinity-maturation of V regions prior to library generation. Despite advantages, few studies have described isolation of antibodies from rats using immune phage display.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR)-modified T cells targeting CD19 demonstrate unparalleled responses in relapsed/refractory acute lymphoblastic leukemia (ALL), but toxicity, including cytokine-release syndrome (CRS) and neurotoxicity, limits broader application. Moreover, 40-60% of patients relapse owing to poor CAR T cell persistence or emergence of CD19 clones. Some factors, including the choice of single-chain spacer and extracellular and costimulatory domains, have a profound effect on CAR T cell function and persistence.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a chronic, systemic, autoimmune disease that leads to excessive joint inflammation and is associated with significant morbidity and mortality. Although much is still to be learned about the aetiology RA, a growing body of evidence suggests that an altered vascular environment is an important aspect of its pathophysiology. In this context, RA shares many similarities with cancer, and it is expected that several angiogenic targets in cancer might be relevant to the treatment of RA.

View Article and Find Full Text PDF

Objective: Biologic drugs, such as the anti-tumor necrosis factor (anti-TNF) antibody adalimumab, have represented a breakthrough in the treatment of rheumatoid arthritis. Yet, concerns remain over their lack of efficacy in a sizable proportion of patients and their potential for systemic side effects such as infection. Improved biologic prodrugs specifically targeted to the site of inflammation have the potential to alleviate current concerns surrounding biologic anticytokine therapies.

View Article and Find Full Text PDF

Despite major advances in the treatment of rheumatoid arthritis (RA) led by the success of biologic therapies, the lack of response to therapy in a proportion of patients, as well as therapy discontinuation owing to systemic toxicity, are still unsolved issues. Unchecked RA might develop into progressive structural joint damage, loss of function and long-term disability, disorders which are associated with a considerable health-economic burden. Therefore, new strategies are required to actively target and deliver therapeutic agents to disease sites in order to promote in situ activity and decrease systemic toxicity.

View Article and Find Full Text PDF

IκB kinase ε (IKK-ε) has an essential role as a regulator of innate immunity, functioning downstream of pattern recognition receptors to modulate NF-κB and interferon (IFN) signaling. In the present study, we investigated IKK-ε activation following T cell receptor (TCR)/CD28 stimulation of primary CD4(+) T cells and its role in the stimulation of a type I IFN response. IKK-ε was activated following TCR/CD28 stimulation of primary CD4(+) T cells; however, in T cells treated with poly(I·C), TCR/CD28 costimulation blocked induction of IFN-β transcription.

View Article and Find Full Text PDF

Objective: To isolate recombinant antibodies with specificity for human arthritic synovium and to develop targeting reagents with joint-specific delivery capacity for therapeutic and/or diagnostic applications.

Methods: In vivo single-chain Fv (scFv) antibody phage display screening using a human synovial xenograft model was used to isolate antibodies specific to the microvasculature of human arthritic synovium. Single-chain Fv antibody tissue-specific reactivity was assessed by immunostaining of synovial tissues from normal controls and from patients with rheumatoid arthritis and osteoarthritis, normal human tissue arrays, and tissues from other patients with inflammatory diseases displaying neovasculogenesis.

View Article and Find Full Text PDF