A machine learning framework to optimize optic nerve electrical stimulation for vision restoration.

Patterns (N Y)

Bertarelli Foundation Chair in Translational NeuroEngineering, Center for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Published: July 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Optic nerve electrical stimulation is a promising technique to restore vision in blind subjects. Machine learning methods can be used to select effective stimulation protocols, but they require a model of the stimulated system to generate enough training data. Here, we use a convolutional neural network (CNN) as a model of the ventral visual stream. A genetic algorithm drives the activation of the units in a layer of the CNN representing a cortical region toward a desired pattern, by refining the activation imposed at a layer representing the optic nerve. To simulate the pattern of activation elicited by the sites of an electrode array, a simple point-source model was introduced and its optimization process was investigated for static and dynamic scenes. Psychophysical data confirm that our stimulation evolution framework produces results compatible with natural vision. Machine learning approaches could become a very powerful tool to optimize and personalize neuroprosthetic systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8276026PMC
http://dx.doi.org/10.1016/j.patter.2021.100286DOI Listing

Publication Analysis

Top Keywords

machine learning
12
optic nerve
12
nerve electrical
8
electrical stimulation
8
learning framework
4
framework optimize
4
optimize optic
4
stimulation
4
stimulation vision
4
vision restoration
4

Similar Publications

Preclinical stroke research faces a critical translational gap, with animal studies failing to reliably predict clinical efficacy. To address this, the field is moving toward rigorous, multicenter preclinical randomized controlled trials (mpRCTs) that mimic phase 3 clinical trials in several key components. This collective statement, derived from experts involved in mpRCTs, outlines considerations for designing and executing such trials.

View Article and Find Full Text PDF

Background: Subcellular localisation is a determining factor of protein function. Mass spectrometry-based correlation profiling experiments facilitate the classification of protein subcellular localisation on a proteome-wide scale. In turn, static localisations can be compared across conditions to identify differential protein localisation events.

View Article and Find Full Text PDF

To address the technical challenges associated with determining the chronological order of overlapping stamps and textual content in forensic document examination, this study proposes a novel non-destructive method that integrates hyperspectral imaging (HSI) with convolutional neural networks (CNNs). A multi-type cross-sequence dataset was constructed, comprising 60 samples of handwriting-stamp sequences and 20 samples of printed text-stamp sequences, all subjected to six months of natural aging. Spectral responses were collected across the 400-1000 nm range in the overlapping regions.

View Article and Find Full Text PDF

Oral cancer is a major global health burden, ranking sixth in prevalence, with oral squamous cell carcinoma (OSCC) being the most common type. Importantly, OSCC is often diagnosed at late stages, underscoring the need for innovative methods for early detection. The oral microbiome, an active microbial community within the oral cavity, holds promise as a biomarker for the prediction and progression of cancer.

View Article and Find Full Text PDF

Postoperative aphasia (POA) is a common complication in patients undergoing surgery for language-eloquent lesions. This study aimed to enhance the prediction of POA by leveraging preoperative navigated transcranial magnetic stimulation (nTMS) language mapping and diffusion tensor imaging (DTI)-based tractography, incorporating deep learning (DL) algorithms. One hundred patients with left-hemispheric lesions were retrospectively enrolled (43 developed postoperative aphasia, as the POA group; 57 did not, as the non-aphasia (NA) group).

View Article and Find Full Text PDF