98%
921
2 minutes
20
Background: Burkholderia pseudomallei is the bacterial causative agent of melioidosis, a difficult disease to diagnose clinically with high mortality if not appropriately treated. Definitive diagnosis requires isolation and identification of the organism. With the increased adoption of MALDI-TOF MS for the identification of bacteria, we established a method for rapid identification of B. pseudomallei using the Vitek MS, a system that does not currently have B. pseudomallei in its in-vitro diagnostic database.
Results: A routine direct spotting method was employed to create spectra and SuperSpectra. An initial B. pseudomallei SuperSpectrum was created at Shoklo Malaria Research Unit (SMRU) from 17 reference isolates (46 spectra). When tested, this initial SMRU SuperSpectrum was able to identify 98.2 % (54/55) of Asian isolates, but just 46.7 % (35/75) of Australian isolates. Using spectra (430) from different reference and clinical isolates, two additional SMRU SuperSpectra were created. Using the combination of all SMRU SuperSpectra with seven existing SuperSpectra from Townsville, Australia 119 (100 %) Asian isolates and 31 (100 %) Australian isolates were correctly identified. In addition, no misidentifications were obtained when using these 11 SuperSpectra when tested with 34 isolates of other bacteria including the closely related species Burkholderia thailandensis and Burkholderia cepacia.
Conclusions: This study has established a method for identification of B. pseudomallei using Vitek MS, and highlights the impact of geographical differences between strains for identification using this technique.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8283998 | PMC |
http://dx.doi.org/10.1186/s12866-021-02276-1 | DOI Listing |
PLoS One
September 2025
Department of Information Technology, Uppsala University, Uppsala, Sweden.
For effective treatment of bacterial infections, it is essential to identify the species causing the infection as early as possible. Current methods typically require hours of overnight culturing of a bacterial sample and a larger quantity of cells to function effectively. This study uses one-hour phase-contrast time-lapses of single-cell bacterial growth collected from microfluidic chip traps, also known as a "mother machine".
View Article and Find Full Text PDFJ Infect Dev Ctries
August 2025
Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China.
Introduction: Nocardia spp. are Gram-positive, aerobic actinomycetes, which can cause pulmonary, primary cutaneous, and lymphocutaneous infections. However, severe pneumonia caused by Nocardia otitidiscaviarum has rare reported.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
September 2025
Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, 51452 P.O. Box 6666, Saudi Arabia.
Foodborne illnesses pose a significant public health threat globally, particularly in Saudi Arabia, where the rapid growth of the food service sector has increased the risk of exposure to multidrug-resistant (MDR) bacteria. Traditional microbiological methods are often time-consuming and may lack precision, highlighting the need for faster and more accurate diagnostic alternatives. In this study, Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) was employed for the rapid and precise identification of bacterial contaminants in ready-to-eat (RTE) foods, alongside an assessment of their antibiotic resistance profiles.
View Article and Find Full Text PDFEur J Neurol
September 2025
Department of Neuroscience 'Rita Levi Montalcini', University of Torino, Torino, Italy.
Background: The factors contributing to a poor response to subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson's disease (PD) are not yet fully understood. Accordingly, predicting the outcome might be challenging particularly in those who display an optimal response to the Levodopa challenge test.
Objective: To determine which factors may contribute to poor outcome of STN-DBS in PD.
RSC Med Chem
August 2025
Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz Staudinger Weg 5 55128 Mainz Germany
Parallel syntheses and their throughput capabilities are powerful tools for the rapid generation of molecule libraries, making them highly beneficial for accelerating hit identification in early-stage drug discovery. Utilizing chemical spaces and virtual libraries enhances time and cost efficiency, enabling the faster exploitation of chemically diverse compounds. In this study, a parallel synthesis method for rapidly generating a 5'-amino-5'-deoxy adenosine-based amide and sulfonamide library of 42 compounds is described with high yields and purity, which is economical and ecological due to the reduced requirements for extensive purification.
View Article and Find Full Text PDF