Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this work, we study topological edge and corner states in two-dimensional (2D) Su-Schrieffer-Heeger lattices from designer surface plasmon crystals (DSPCs), where the vertical confinement of the designer surface plasmons enables signal detection without the need of additional covers for the sample. In particular, the formation of higher-order topological insulator can be determined by the two-dimensional Zak phase, and the zero-dimensional subwavelength corner states are found in the designed DSPCs at the terahertz (THz) frequency band together with the edge states. Moreover, the corner state frequency can be tuned by modifying the defect strength, i.e., the location or diameter of the corner pillars. This work may provide a new approach for confining THz waves in DSPCs, which is promising for the development of THz topological photonic integrated devices with high compactness, robustness and tunability.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.431151DOI Listing

Publication Analysis

Top Keywords

corner states
12
designer surface
12
topological edge
8
edge corner
8
surface plasmon
8
plasmon crystals
8
corner
5
tunable terahertz
4
topological
4
terahertz topological
4

Similar Publications

The solid-solution alloys of Mn-Zn-Ga and Mn-Zn-Sn have been synthesized by a high-temperature method and structurally characterized by X-ray diffraction studies. The substitutional solid-solution alloys that crystallize in the chiral space group 432 or 432 adopt the A13-type structure (β-Mn). Similar to β-Mn, the 20 atoms in the cubic unit cell are distributed over 8 and 12 Wyckoff positions.

View Article and Find Full Text PDF

Background/objectives: Respiratory viruses circulate year-round and can spread indoors via inhalation of airborne particles. Effective ventilation and filtration may reduce transmission, particularly in school settings where children and staff spend significant time. This study examines the impact of indoor air quality (IAQ) and ventilation in schools on respiratory virus detection.

View Article and Find Full Text PDF

Controlling the Regioselectivity of Topochemical Reduction Reactions Through Sequential Anion Insertion and Extraction.

Angew Chem Int Ed Engl

September 2025

Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.

Topochemical reduction of the n = 2 Ruddlesden-Popper oxide, LaSrCoRuO, yields LaSrCoRuO, a phase containing (Co/Ru)O squares which share corners to form 1D infinite double-chains. In contrast, fluorination of LaSrCoRuO yields the oxyfluoride LaSrCoRuOF, which can then be reduced to form LaSrCoRuOF. This reduced oxyfluoride is almost isoelectronic with LaSrCoRuO, but LaSrCoRuOF has a crystal structure in which the (Co/Ru)O squares are connected into 2D infinite sheets.

View Article and Find Full Text PDF

Two-Step Semi-Automated Classification of Choroidal Metastases on MRI: Orbit Localization via Bounding Boxes Followed by Binary Classification via Evolutionary Strategies.

AJNR Am J Neuroradiol

September 2025

From the Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America (J.S.S., B.M., S.H., A.H., J.S.), and Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (H.S.).

Background And Purpose: The choroid of the eye is a rare site for metastatic tumor spread, and as small lesions on the periphery of brain MRI studies, these choroidal metastases are often missed. To improve their detection, we aimed to use artificial intelligence to distinguish between brain MRI scans containing normal orbits and choroidal metastases.

Materials And Methods: We present a novel hierarchical deep learning framework for sequential cropping and classification on brain MRI images to detect choroidal metastases.

View Article and Find Full Text PDF