98%
921
2 minutes
20
Evidence suggests that older adults have difficulty relative to younger adults in forgetting irrelevant information. Here we sought to understand the physical basis of this deficit by investigating the relationship between cortical thickness and intentional forgetting, using an item-method directed forgetting task. We tested younger (n = 44) and older (n = 54) adults' memories for words that they were instructed to either remember or to forget, and then extracted cortical thickness values from brain regions previously shown, using functional neuroimaging, to be associated with memory suppression, including the right inferior frontal gyrus, the right postcentral gyrus and the left superior/middle frontal gyrus. Results from a parallel mediation model indicated that variations in cortical thickness in the right inferior frontal gyrus, but not the right postcentral gyrus or left superior/middle frontal gyrus, partially explained age-related differences in directed forgetting: older adults with thinner cortices in this area showed worse forgetting ability. This is the first study to explore how neuromorphological differences affect the ability to intentionally suppress items in memory. The results suggest that age-related differences in directed forgetting may be partly driven by cortical thickness in a brain structure known to be functionally involved in directed forgetting, and inhibitory control more broadly, supporting a contribution of deficient inhibition to this phenomenon.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8419107 | PMC |
http://dx.doi.org/10.1016/j.neurobiolaging.2021.06.001 | DOI Listing |
Introduction: Advances in neonatology, neonatal surgery, and extracorporeal membrane oxygenation (ECMO) have improved the prognosis of congenital diaphragmatic hernia (CDH). However, CDH survivors are at considerable risk of long-term neurological morbidity. Magnetic resonance imaging (MRI) abnormalities are reported in up to 84% of CDH-survivors but have only been rarely compared with neurodevelopmental outcomes.
View Article and Find Full Text PDFTraffic Inj Prev
September 2025
Center for Applied Biomechanics, University of Virginia, Charlottesville, Virginia.
Objective: Multiple studies have demonstrated an increased risk of lower extremity injuries for females in frontal crashes. This study aimed to investigate whether sex-based anatomical differences, as measured on computed tomography (CT) scans of the abdomen and pelvis, contribute to lower extremity injury risk.
Methods: The Crash Injury Research and Engineering Network (CIREN) database (2017-2023) was queried for frontal collisions.
Background Aging involves heterogeneous brain grey matter (GM) loss patterns that may overlap with dementia-related changes. We evaluated cognitively unimpaired older adults to identify specific GM patterns, their clinical and cognitive profiles, and longitudinal trajectories. Methods We analyzed 746 participants from the Gothenburg H70 Study using random forest clustering based on MRI measures of cortical thickness and subcortical volume across 41 regions.
View Article and Find Full Text PDFIndividual differences in neural circuits underlying emotional regulation, motivation, and decision-making are implicated in many psychiatric illnesses. Interindividual variability in these circuits may manifest, at least in part, as individual differences in impulsivity at both normative and clinically significant levels. Impulsivity reflects a tendency towards rapid, unplanned reactions to internal or external stimuli without considering potential negative consequences coupled with difficulty inhibiting responses.
View Article and Find Full Text PDFStructural brain abnormalities in psychosis are well-replicated but heterogenous posing a barrier to uncovering the pathophysiology, etiology, and treatment of psychosis. To parse neurostructural heterogeneity and assess for the presence of anatomically-derived subtypes, we applied a data-driven method, similarity network fusion (SNF), to structural neuroimaging data in a broad cohort of individuals with psychosis (schizophrenia spectrum disorders (SSD) n=280; bipolar disorder with psychotic features (BD) n=101). SNF identified two transdiagnostic subtypes in psychosis (subtype 1: n=158 SSD, n=75 BD; subtype 2: n=122 SSD, n=26 BD) that exhibited divergent patterns of abnormal cortical surface area and subcortical volumes.
View Article and Find Full Text PDF