98%
921
2 minutes
20
Linear ubiquitination is a reversible posttranslational modification, which plays key roles in multiple biological processes. Linear ubiquitin chain assembly complex (LUBAC) catalyzes linear ubiquitination, while the deubiquitinase OTULIN (OTU deubiquitinase with linear linkage specificity, FAM105B) exclusively cleaves the linear ubiquitin chains. However, our understanding of linear ubiquitination is restricted to a few substrates and pathways. Here we used a human proteome microarray to detect the interacting proteins of LUBAC and OTULIN by systematically screening up to 20,000 proteins. We identified many potential interacting proteins of LUBAC and OTULIN, which may function as regulators or substrates of linear ubiquitination. Interestingly, our results also hint that linear ubiquitination may have broad functions in diverse pathways. In addition, we recognized lymphocyte activation gene-3 (LAG3, CD223), a transmembrane receptor that negatively regulates lymphocyte functions as a novel substrate of linear ubiquitination in the adaptive immunity pathway. In conclusion, our results provide searchable, accessible data for the interacting proteins of LUBAC and OTULIN, which broaden our understanding of linear ubiquitination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8274477 | PMC |
http://dx.doi.org/10.3389/fcell.2021.686395 | DOI Listing |
Neurotrauma Rep
August 2025
Department of Kinesiology, Indiana University School of Public Health-Bloomington, Bloomington, Indiana, USA.
Repetitive head impacts from contact sports are associated with an increased risk of neurodegenerative conditions. While studies have examined acute and chronic outcomes in young and deceased athletes, research on middle-aged former athletes remains limited. We employed multiplex biomarker approaches to examine whether brain injury and systemic inflammatory blood biomarkers are reflective of ≥10 years of participation in contact sports in retired, middle-aged amateur athletes.
View Article and Find Full Text PDFTransl Stroke Res
September 2025
Department of Medical Sciences, Translational Neurology, Uppsala University, Uppsala, Sweden.
Objective: To determine the temporal profiles of glial fibrillary acidic protein (GFAP), neurofilament light (NFL), total tau (t-tau), and ubiquitin carboxy-terminal hydrolase L1 (UCHL1) in plasma the first week after acute ischemic stroke, and identify the optimal time points for assessing infarct volume by these biomarkers.
Patients & Methods: In this cohort study, biomarker plasma concentrations were determined daily over the first week and at 90 days after symptom onset in patients with acute ischemic stroke. A brain MRI was performed on day three.
J Clin Invest
September 2025
Department of Medicine.
A20, encoded by the TNFAIP3 gene, is a protein linked to Crohn's disease and celiac disease in humans. We now find that mice expressing point mutations in A20's M1-ubiquitin-binding zinc finger 7 (ZF7) motif spontaneously develop proximal enteritis that requires both luminal microbes and T cells. Cellular and transcriptomic profiling reveals expansion of Th17 cells and exuberant expression of IL-17A and IL-22 in intestinal lamina propria of A20ZF7 mice.
View Article and Find Full Text PDFElife
September 2025
Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom.
E3 ubiquitin ligases engage their substrates via 'degrons' - short linear motifs typically located within intrinsically disordered regions of substrates. As these enzymes are large, multi-subunit complexes that generally lack natural small-molecule ligands and are difficult to inhibit via conventional means, alternative strategies are needed to target them in diseases, and peptide-based inhibitors derived from degrons represent a promising approach. Here we explore peptide inhibitors of Cdc20, a substrate-recognition subunit and activator of the E3 ubiquitin ligase the anaphase-promoting complex/cyclosome (APC/C) that is essential in mitosis and consequently of interest as an anti-cancer target.
View Article and Find Full Text PDFInt J Mol Sci
August 2025
Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
Class IId bacteriocins are linear, unmodified antimicrobial peptides produced by Gram-positive bacteria, and often display potent, narrow-spectrum inhibition spectra. Garvicin Q (GarQ) is a class IId bacteriocin produced by the lactic acid bacterium . It stands out for its unusual broad-spectrum antimicrobial activity against various bacterial species, including , , , , and spp.
View Article and Find Full Text PDF