Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Grain filling and grain development are essential biological processes in the plant's life cycle, eventually contributing to the final seed yield and quality in all cereal crops. Studies of how the different wheat (Triticum aestivum L.) grain components contribute to the overall development of the seed are very scarce. We performed a proteomics and metabolomics analysis in four different developing components of the wheat grain (seed coat, embryo, endosperm, and cavity fluid) to characterize molecular processes during early and late grain development. In-gel shotgun proteomics analysis at 12, 15, 20, and 26 days after anthesis (DAA) revealed 15 484 identified and quantified proteins, out of which 410 differentially expressed proteins were identified in the seed coat, 815 in the embryo, 372 in the endosperm, and 492 in the cavity fluid. The abundance of selected protein candidates revealed spatially and temporally resolved protein functions associated with development and grain filling. Multiple wheat protein isoforms involved in starch synthesis such as sucrose synthases, starch phosphorylase, granule-bound and soluble starch synthase, pyruvate phosphate dikinase, 14-3-3 proteins as well as sugar precursors undergo a major tissue-dependent change in abundance during wheat grain development suggesting an intimate interplay of starch biosynthesis control. Different isoforms of the protein disulfide isomerase family as well as glutamine levels, both involved in the glutenin macropolymer pattern, showed distinct spatial and temporal abundance, revealing their specific role as indicators of wheat gluten quality. Proteins binned into the functional category of cell growth/division and protein synthesis/degradation were more abundant in the early stages (12 and 15 DAA). At the metabolome level all tissues and especially the cavity fluid showed highly distinct metabolite profiles. The tissue-specific data are integrated with biochemical networks to generate a comprehensive map of molecular processes during grain filling and developmental processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9291999PMC
http://dx.doi.org/10.1111/tpj.15410DOI Listing

Publication Analysis

Top Keywords

grain filling
16
wheat grain
12
grain development
12
cavity fluid
12
grain
10
seed coat
8
molecular processes
8
wheat
6
proteins
5
development
5

Similar Publications

Shocked quartz grains are an accepted indicator of crater-forming cosmic impact events, which also typically produce amorphous silica along the fractures. Furthermore, previous research has shown that shocked quartz can form when nuclear detonations, asteroids, and comets produce near-surface or "touch-down" airbursts. When cosmic airbursts detonate with enough energy and at sufficiently low altitude, the resultant relatively small, high-velocity fragments may strike Earth's surface with high enough pressures to generate thermal and mechanical shock that can fracture quartz grains and introduce molten silica into the fractures.

View Article and Find Full Text PDF

Cell wall invertase improves grain nutrition via regulating sugar and hormone metabolism gene expression in transgenic soybean.

Ann Bot

September 2025

The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, China 264025.

Background And Aims: Cell wall invertases have multiple roles in plant growth and development, yet their biological functions in seed oil production are still not understood.

Methods: In the present study, the Oryza sativa (rice) cell wall invertase gene OsGIF1 (GRAIN INCOMPLETE FILLING 1) was ectopically expressed in Glycine max (Soybean) and its functions in grain yield and seed nutrition was investigated.

Key Results: We found that constitutive expression of OsGIF1 significantly improved biomass production, grain yield and seed nutrition in transgenic plants.

View Article and Find Full Text PDF

Gene expression of developing seeds drives essential processes such as nutrient storage, stress tolerance and germination. However, the spatial organisation of gene expression within the complex structure of the seed remains largely unexplored. Here we report the use of the STOmics spatial transcriptomics platform to visualise spatial expression patterns in the wheat (Triticum aestivum) seed at the critical period of grain filling in mid-seed development.

View Article and Find Full Text PDF

Genomic selection is an extension of marker-assisted selection by leveraging thousands of molecular markers distributed across the genome to capture the maximum possible proportion of the genetic variance underlying complex traits. In this study, genomic prediction models were developed by integrating phenological, physiological, and high-throughput phenotyping traits to predict grain yield in bread wheat (Triticum aestivum L.) under three environmental conditions: irrigation, drought stress, and terminal heat stress.

View Article and Find Full Text PDF

Background: As wheat is a globally important staple crop, the molecular regulatory network underlying heterosis in wheat remains incompletely understood. The flag leaf is the primary source of photoassimilates during grain filling and plays a crucial role in yield formation. However, the genetic mechanisms linking flag leaf development to heterosis are still unclear.

View Article and Find Full Text PDF