Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Genetics intersects with environmental, cultural, and social factors in the development of addictive disorders. This study reports the feasibility of whole-exome sequencing of trios (subject and two family members) to discover potential genetic variants in the development of substance use disorders (SUD). Family trios were recruited from the National Addictions Management Service in Singapore during the 2016-2018 period. Recruited subjects had severe alcohol use disorder (AUD) or opioid use disorder (OUD), with nicotine dependence (ND) and a family history of addictive disorders. Demographic characteristics and severity of addiction were captured. Whole-exome sequencing (WES) and analysis were performed on salivary samples collected from the trios. WES revealed variants in several genes in each individual and disruptive protein mutations in most. Variants were identified in genes previously associated with SUDs, such as Pleckstrin homology domain-containing family M member 3 (PLEKHM3), coiled-coil serine-rich protein 1 (CCSER1), LIM and calponin homology domains-containing protein 1 (LIMCH1), dynein axonemal heavy chain 8 (DNAH8), and the taste receptor type 2 member 38 (TAS2R38) involved in the perception of bitterness. The feasibility study suggests that subjects with a severe addiction profile, polysubstance use, and family history of addiction may often harbor gene variants that may predispose them to SUDs. This study could serve as a model for future precision medicine-based personalized interventional strategies for behavioral addictions and SUDs and for the discovery of potentially pathogenic genetic variants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8269170PMC
http://dx.doi.org/10.3390/jcm10132810DOI Listing

Publication Analysis

Top Keywords

whole-exome sequencing
12
potential genetic
8
substance disorders
8
feasibility study
8
addictive disorders
8
genetic variants
8
subjects severe
8
family history
8
family
5
variants
5

Similar Publications

Accurate tumor mutation burden (TMB) quantification is critical for immunotherapy stratification, yet remains challenging due to variability across sequencing platforms, tumor heterogeneity, and variant calling pipelines. Here, we introduce TMBquant, an explainable AI-powered caller designed to optimize TMB estimation through dynamic feature selection, ensemble learning, and automated strategy adaptation. Built upon the H2O AutoML framework, TMBquant integrates variant features, minimizes classification errors, and enhances both accuracy and stability across diverse datasets.

View Article and Find Full Text PDF

Background: Stickler syndrome (STL) is a group of related connective tissue disorders characterized by heterogeneous clinical presentations with varying degrees of orofacial, ocular, skeletal, and auditory abnormalities. However, this condition is difficult to diagnose on the basis of clinical features because of phenotypic variability. Thus, expanding the variant spectrum of this disease will aid in achieving a firm definitive diagnosis of STL.

View Article and Find Full Text PDF

Raw lacquer-associated familial chronic myelomonocytic leukemia with multi-hit mutations.

Front Oncol

August 2025

Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.

Background: To explore the potential association between long-term exposure to raw lacquer and the development of chronic myelomonocytic leukemia (CMML).

Methods: We analyzed the clinical and hematological characteristics of an elderly couple with CMML. Whole-exome sequencing (WES) was performed to identify relevant gene variants, with a focus on mutation status.

View Article and Find Full Text PDF

Introduction: The integration of genetic testing in pediatrics has advanced significantly in recent years. The incorporation of technologies such as Next Generation Sequencing (NGS) and array-based Comparative Genomic Hybridization (aCGH) in increasingly younger patients has accelerated the transition toward precision medicine.

Methods: This retrospective cross-sectional study (January 2021-June 2024) included 187 neonates (≤90 days old) from the NICUs of the Clínica Colsanitas network in Bogotá, Colombia and evaluate the diagnostic yield for genomic testing comprising 82 Whole Exome Sequencing (WES) and 125 aCGH tests, with 18 patients undergoing both.

View Article and Find Full Text PDF

Selenocysteine insertion sequence-binding protein 2 () is crucial for the biosynthesis of selenoproteins, including iodothyronine deiodinases, which play a vital role in thyroid hormone metabolism. Mutations in can disrupt thyroid function, leading to various clinical manifestations across multiple systems. We present the case of a 3-year-old Saudi female who was referred for genetic testing due to poor growth, developmental abnormalities, and notable facial dysmorphism.

View Article and Find Full Text PDF