Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fly ash, the main component for controlled low-strength material (CLSM), has physical and chemical characteristics according to the resources used in the thermal power plant, and thus fly ash type can influence the physical and strength properties of CLSM. This study investigates the effect of fly ash type on the engineering properties of CLSM and establishes relationships between mechanical properties of CLSM and shear wave velocity (SWV) for long curing times. Six fly ashes with different physical properties and chemical components are used for preparing the CLSM mixtures. The air content, unit weight, flowability, and setting time of CLSM are measured. Unconfined compressive strength (UCS) and elastic modulus (E) are obtained from unconfined compressive tests, and SWV (V) is determined using a bender element-based wave measurement system. Experimental results show that the stiffness and strength characteristics of CLSM are relevant to the contents of two oxides (SiO and AlO) and the fineness of fly ash. Because the evolution of SWV is influenced by the fly ash type, the relationships UCS-V and E-V are well established. Thus, considering the fly ash type, shear wave monitoring may be effectively used for estimating strength and stiffness characteristics of CLSM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199673PMC
http://dx.doi.org/10.3390/ma14113022DOI Listing

Publication Analysis

Top Keywords

fly ash
28
ash type
16
shear wave
12
properties clsm
12
fly
8
strength stiffness
8
stiffness characteristics
8
controlled low-strength
8
low-strength material
8
wave monitoring
8

Similar Publications

The pyrolysis of flue-cured tobacco stalks (TS) faces challenges such as low bio-oil value and utilization efficiency. Existing studies have overlooked the anatomical heterogeneity of tobacco stalks, thereby limiting the directional regulation of high-value components, such as nicotine and phenolic compounds. This study divides TS into the husk (TSH), xylem (TSX), and pith (TSP), and investigates their physicochemical properties, pyrolysis behavior (through TGA and fixed-bed pyrolysis experiments), and interactions.

View Article and Find Full Text PDF

Zeolite synthesis from fly ash offers recycling and environmental benefits for carbon dioxide capture, but varying fly ash composition from different sources has different compositions, leading to inconsistent adsorption results. To achieve high CO adsorption performance and stability in zeolite synthesis from fly ash systems, this study established an element-controlled simulated fly ash system with Ca/Fe gradient differences. Hydrothermal synthesis yielded zeolites with optimized oxide ratios for CO adsorption.

View Article and Find Full Text PDF

Pollution from past industrial activities can remain unnoticed for years or even decades because the pollutant has only recently gained attention or been identified by measurements. Modeling the emission history of pollution is essential for estimating population exposure and apportioning potential liability among stakeholders. This paper proposes a novel approach for reconstructing the history of polychlorinated dibenzo-p-dioxin (PCDD) and polychlorinated dibenzofuran (PCDF) pollution from municipal solid waste incinerators (MSWIs) with unknown past emissions.

View Article and Find Full Text PDF

Performance assessment of reclaimed fly ash-slag geopolymers incorporating waste spent garnet and waste foundry sand under different curing regimes.

Environ Res

September 2025

Materials Science, Engineering, and Commercialization (MSEC) Program, Texas State University, San Marcos, TX-78666, USA; Department of Engineering Technology, Texas State University, San Marcos, TX-78666, USA.

Fly ash (FA) landfills are overflowing with materials, and unexplored waste streams like waste spent garnet (WSG) and waste foundry sand (WFS) are often dumped in onsite storage spaces, limiting land availability for future use and exacerbating environmental concerns related to waste disposal. Therefore, this research proposes recycling FA to produce reclaimed FA (RFA) as a binder, replacing 40-60% of ground granulated blast furnace slag (GGBFS) and 30-50% of river sand (RS) with WSG and WFS to produce geopolymers. The performance of geopolymers was assessed under different curing regimes, including ambient-temperature curing (ATC), ambient-temperature water curing (AWC), high-temperature curing (HTC), and high-temperature water curing (HWC).

View Article and Find Full Text PDF

The disposal of municipal solid waste incineration fly ashes (MSWI-FA) is complicated by soluble chlorides, which increase the risk of heavy metals (HMs) leaching toxicity and hinder the further use of remediated MSWI-FA. In this study, the self-assembly potentiality of magnesium oxychloride cement (MOC) in geopolymerization was explored and utilized to enhance the solidification/stabilization (S/S) of the MSWI-FA. The MOC-self-assembled geopolymerization kinetics can be suitably described by the JMAK model.

View Article and Find Full Text PDF