Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The aims of this study were to localize the body surface position and depth of nerve entry points, and the center of the intramuscular nerve-dense regions of the pectoralis major and pectoralis minor in order to provide guidance for blocking muscle spasticity. Formalin-fixed adult cadavers (66.3 ± 5.2 years) were used. The curved line on the skin from the acromion to the most inferior point of the jugular notch was defined as the horizontal reference line (H). The line from the most inferior point of the jugular notch to the xiphisternal joint was defined as the longitudinal reference line (L). The nerve entry points was anatomically exposed. Sihler's staining, barium sulfate labeling, and computed tomography were employed to determine the projection points (P) on the body surface. The intersection of the longitudinal line through the P point and the H line and the horizontal line through the P point and the L line were recorded as P and P , respectively. The projection of the nerve entry points or the center of the intramuscular nerve-dense regions were in the opposite direction across the transverse plane and were recorded as P'. The percentage positions of P and P on the H and L lines, as well as the nerve entry points and the center of the intramuscular nerve-dense regions depths, were determined using the Syngo system. The pectoralis major had two nerve entry points, while the pectoralis minor had only one. In addition, two intramuscular nerve-dense regions were found in the pectoralis major, while only one region was found in the pectoralis minor. The P of the nerve entry points were located at 47.83%, 32.31%, and 34.31%, while the P of the center of the intramuscular nerve-dense regions were at 41.95%, 55.88%, and 32.58% of line H, respectively. The P of the nerve entry points were at -9.84%, 36.16%, and 2.44%, while the P for each of three center of the intramuscular nerve-dense regions was at -3.87%, 25.29%, and -7.13% of line L, respectively. The depth for each of the nerve entry points was at 17.76%, 17.53%, and 25.51% of line P-P'', respectively, and the depth of the center of the intramuscular nerve-dense regions was at 5.23%, 6.75%, and 13.73% of line P-P', respectively. These percentage values are all means. The definition of the surface position and depth of these nerve entry points and center of the intramuscular nerve-dense regions can improve the localization efficiency and efficacy of target blocking for pectoralis major and minor spasticity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8546509PMC
http://dx.doi.org/10.1111/joa.13493DOI Listing

Publication Analysis

Top Keywords

nerve entry
40
entry points
40
intramuscular nerve-dense
36
nerve-dense regions
36
center intramuscular
32
points center
20
pectoralis major
20
pectoralis minor
16
depth nerve
12
points
11

Similar Publications

Swept Source Optical Coherence Tomography Imaging of the Optic Pit Complex.

Retina

September 2025

From the Vitreous, Retina, Macula Consultants of New York, New York, NY.

Purpose: To reassess the anatomic basis of optic disc pit maculopathy (OPM) using swept-source optical coherence tomography (SS-OCT) and to characterize the broader structural abnormalities comprising the optic pit complex.

Methods: Sixteen patients with OPM were imaged using a high-resolution SS-OCT system (DREAM OCT). Cross-sectional and volume-rendered scans were analyzed for lamina cribrosa defects, intraneural cavitations, and pathways for fluid entry into or beneath the retina.

View Article and Find Full Text PDF

Neuroinflammatory Consequences of Rhinovirus Infection in Human Epithelial and Neuronal Models.

Lung

September 2025

The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Belfast BT9 7BL, UK.

Introduction: Rhinovirus (RV) is the leading cause of exacerbations of lung disease. A sensory neuronal model, derived from human dental pulp stem cells and differentiated into peripheral neuronal equivalents (PNEs), was used to examine RV's effects on airway sensory nerves. We investigated whether RV can directly infect and alter PNEs or whether it exerts effects indirectly via the release of mediators from infected epithelial cells.

View Article and Find Full Text PDF

Cell size is strongly correlated with several biological processes, including the cell cycle and growth. Here, we investigated the regulation of stem cell size during central nervous system (CNS) development and its association with cell fate. We note that neural stem cells (NSCs) in different regions of the ventral nerve cord increase their size at different rates.

View Article and Find Full Text PDF

An Update on Novel Drug Delivery Systems for the Management of Glaucoma.

Pharmaceutics

August 2025

Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates.

Glaucoma is recognized as a chronic optic neuropathy marked by progressive optic nerve degeneration, loss of retinal ganglion cells (RGCs, the neurons responsible for transmitting visual information from the eye to the brain), disruptions in optic disc blood supply, and changes in glial cell activation. It ranks as the second most prevalent cause of irreversible visual impairment worldwide and is a resultant of increased intraocular pressure (IOP). Addressing this condition proves complex due to the inherent hindrances posed by ocular barriers, which curtail the entry of drugs into the eye.

View Article and Find Full Text PDF

Ethacrynic acid regulates gentamicin ototoxicity via the blood-labyrinth barrier.

Hear Res

August 2025

Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guang Zhou, Guangdong, China, 510630. Electronic address:

Gentamicin (GM), a widely used aminoglycoside antibiotic, has its clinical utility significantly limited by ototoxicity, which may be further exacerbated by co-administered drugs. This study systematically investigated the ototoxic mechanisms of GM combined with ethacrynic acid (EA) and the protective effects of N-acetylcysteine (NAC) using C57BL/6 J mice. Results revealed dose-dependent GM-induced ototoxicity.

View Article and Find Full Text PDF