98%
921
2 minutes
20
SARS-CoV-2 M, also known as the main protease or 3C-like protease, is a key enzyme involved in the replication process of the virus that is causing the COVID-19 pandemic. It is also the most promising antiviral drug target targeting SARS-CoV-2 virus. In this work, the catalytic mechanism of M was studied using the full model of the enzyme and a computational QM/MM methodology with a 69/72-atoms QM region treated at DLPNO-CCSD(T)/CBS//B3LYP/6-31G(d,p):AMBER level and including the catalytic important oxyanion-hole residues. The transition state of each step was fully characterized and described together with the related reactants and products. The rate-limiting step of the catalytic process is the hydrolysis of the thioester-enzyme adduct, and the calculated barrier closely agrees with the available kinetic data. The calculated Gibbs free energy profile, together with the full atomistic detail of the structures involved in catalysis, can now serve as valuable models for the rational drug design of transition state analogs as new inhibitors targeting the SARS-CoV-2 virus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8224256 | PMC |
http://dx.doi.org/10.1007/s11030-021-10259-7 | DOI Listing |
ACS Catal
August 2025
Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.
Chlorinated hydrocarbons are widely used as solvents and synthetic intermediates, but their chemical persistence can cause hazardous environmental accumulation. Haloalkane dehalogenase from (DhlA) is a bacterial enzyme that naturally converts toxic chloroalkanes into less harmful alcohols. Using a multiscale approach based on the empirical valence bond method, we investigate the catalytic mechanism of 1,2-dichloroethane dehalogenation within DhlA and its mutants.
View Article and Find Full Text PDFEco Environ Health
September 2025
Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China.
Waterborne viruses have caused outbreaks of related diseases and threaten human health, and advanced oxidation processes (AOPs), as clean and efficient technologies, have received widespread attention for their excellent performance in inactivating viruses. However, heterogeneity in susceptibility of structurally distinct viruses to various reactive oxygen species (ROS) is unclear. This study first measured the heterogeneity in inactivation kinetics and biological mechanisms of four typical viral surrogates (MS2, phi6, phix174, and T4) to various ROS by visible light catalysis.
View Article and Find Full Text PDFACS Electrochem
September 2025
Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London W12 0BZ, United Kingdom.
The development of copper-catalyzed C-H functionalization processes is challenging due to the inefficiency of conventional chemical oxidants in regenerating the copper catalyst. This study details the development of a mediated electrosynthetic approach involving triple catalytic cycles in transient C-H functionalization to achieve efficient copper-catalyzed C-(sp)-H sulfonylation of benzylamines with sodium sulfinate salts. The triple catalytic system consists of a copper organometallic cycle for C-H functionalization, an aldehyde transient directing group (TDG) as an organocatalyst for imine formation, and a ferrocenium salt as an electrocatalyst.
View Article and Find Full Text PDFRSC Adv
September 2025
Departament de Química, Universitat Autònoma de Barcelona Bellaterra 08193 Barcelona Spain
Mammalian ALOX15 are allosteric enzymes but the mechanism of allosteric regulation remains a matter of discussion. Octyl (-(5-(1-indol-2-yl)-2-methoxyphenyl)sulfamoyl)carbamate inhibits the linoleate oxygenase activity of ALOX15 at nanomolar concentrations, but oxygenation of arachidonic acid is hardly affected. The mechanism of substrate selective inhibition suggests inter-monomer communication within the allosteric ALOX15 dimer complex, in which the inhibitor binding to monomer A induces conformational alterations in the structure of the active site of monomer B.
View Article and Find Full Text PDFFront Microbiol
August 2025
Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.
Polyurethane (PU), a segmented block copolymer with chemically resistant urethane linkages and tunable architecture, presents persistent biological recycling challenges. This study presents a Bacterial Laccase-Mediated System (BLMS) derived from for efficient degradation of polyester- and polyether-PU. Utilizing the laccase CotA and mediator 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), the BLMS demonstrated effective de polymerization of both commercial and self-synthesized PU foams, including polyester- and polyether-types.
View Article and Find Full Text PDF