Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: We sought to develop and validate machine learning (ML) models to increase the predictive accuracy of mortality after heart transplantation (HT).

Methods And Results: We included adult HT recipients from the United Network for Organ Sharing (UNOS) database between 2010 and 2018 using solely pre-transplant variables. The study cohort comprised 18 625 patients (53 ± 13 years, 73% males) and was randomly split into a derivation and a validation cohort with a 3:1 ratio. At 1-year after HT, there were 2334 (12.5%) deaths. Out of a total of 134 pre-transplant variables, 39 were selected as highly predictive of 1-year mortality via feature selection algorithm and were used to train five ML models. AUC for the prediction of 1-year survival was .689, .642, .649, .637, .526 for the Adaboost, Logistic Regression, Decision Tree, Support Vector Machine, and K-nearest neighbor models, respectively, whereas the Index for Mortality Prediction after Cardiac Transplantation (IMPACT) score had an AUC of .569. Local interpretable model-agnostic explanations (LIME) analysis was used in the best performing model to identify the relative impact of key predictors. ML models for 3- and 5-year survival as well as acute rejection were also developed in a secondary analysis and yielded AUCs of .629, .609, and .610 using 27, 31, and 91 selected variables respectively.

Conclusion: Machine learning models showed good predictive accuracy of outcomes after heart transplantation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ctr.14388DOI Listing

Publication Analysis

Top Keywords

machine learning
12
heart transplantation
12
unos database
8
learning models
8
predictive accuracy
8
pre-transplant variables
8
models
5
state-of-the-art machine
4
learning algorithms
4
algorithms prediction
4

Similar Publications

Traditional drug discovery methods like high-throughput screening and molecular docking are slow and costly. This study introduces a machine learning framework to predict bioactivity (pIC₅₀) and identify key molecular properties and structural features for targeting Trypanothione reductase (TR), Protein kinase C theta (PKC-θ), and Cannabinoid receptor 1 (CB1) using data from the ChEMBL database. Molecular fingerprints, generated via PaDEL-Descriptor and RDKit, encoded structural features as binary vectors.

View Article and Find Full Text PDF

Oral bioavailability property prediction based on task similarity transfer learning.

Mol Divers

September 2025

Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.

Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.

View Article and Find Full Text PDF

This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.

View Article and Find Full Text PDF

Background And Objectives: Older adults living with dementia are a heterogeneous group, which can make studying optimal medication management challenging. Unsupervised machine learning is a group of computing methods that rely on unlabeled data-that is, where the algorithm itself is discovering patterns without the need for researchers to label the data with a known outcome. These methods may help us to better understand complex prescribing patterns in this population.

View Article and Find Full Text PDF