98%
921
2 minutes
20
By using a full factorial design of experiment, the combinatorial effects of biological sex, shear stress, and substrate stiffness on human umbilical vein endothelial cell (HUVEC) spreading and Yes-associated protein 1 (YAP1) activity are able to be efficiently evaluated. Within the range of shear stress (0.5-1.5 Pa) and substrate stiffness (10-100 kPa), male HUVECs are smaller than female HUVECs. Only with sufficient mechanical stimulation do they spread to a similar size. More importantly, YAP1 nuclear localization in female HUVECs is invariant to mechanical stimulation within the range of tested conditions whereas for male HUVECs it increases nonlinearly with increasing shear stress and substrate stiffness. The sex-specific response of HUVECs to combinations of shear stress and substrate stiffness reinforces the need to include sex as a biological variable and multiple mechanical stimuli in experiments, informs the design of precision biomaterials, and offers insight for understanding cardiovascular disease sexual dimorphisms. Moreover, here it is illustrated that different complex mechanical microenvironments can lead to sex-specific phenotypes and sex invariant phenotypes in cultured endothelial cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8458248 | PMC |
http://dx.doi.org/10.1002/adhm.202100735 | DOI Listing |
PLoS One
September 2025
Mechanical and Nuclear Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
Sectionally nonlinearly functionally graded (SNFG) structures with triply periodic minimal surface (TPMS) are considered ideal for bone implants because they closely replicate the hierarchical, anisotropic, and porous architecture of natural bone. The smooth gradient in material distribution allows for optimal load transfer, reduced stress shielding, and enhanced bone ingrowth, while TPMS provides high mechanical strength-to-weight ratio and interconnected porosity for vascularization and tissue integration. Wherein, The SNFG structure contains sections with thickness that varies nonlinearly along their length in different patterns.
View Article and Find Full Text PDFArterial thrombosis is a multifaceted process characterized by platelet aggregation and fibrin deposition, leading to the occlusion of blood vessels. It plays a central role in cardiovascular conditions such as myocardial infarction and ischemic stroke. Gaining insight into the mechanisms underlying arterial thrombosis is essential for developing effective treatments aimed at preventing thrombotic events and reducing associated health burdens.
View Article and Find Full Text PDFASAIO J
September 2025
Thoraxcenter, Department of Cardiology Cardiovascular Institute, Erasmus MC University Medical Centre Rotterdam, Rottedam, the Netherlands.
JTCVS Open
August 2025
The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.
Objectives: Left ventricular vortex dynamics play a crucial role in cardiac function but are significantly altered by mitral valve diseases or surgical interventions. Such hemodynamic changes may lead to maladaptive intracardiac vortices, potentially triggering pathways associated with progressive left ventricular remodeling and thrombosis. This study assessed left ventricular hemodynamics under both physiological and pathological conditions using a biohybrid in vitro platform, aiming to analyze the impact of these conditions on cardiac function.
View Article and Find Full Text PDFJTCVS Open
August 2025
Division of Congenital Heart Surgery, Department of Surgery, Texas Children's Hospital Heart Center and Baylor College of Medicine, Houston, Tex.
Objective: Pediatric pulmonary vein stenosis (PVS) is associated with substantial morbidity and mortality for the subset of patients with recurrent or progressive disease. The molecular mechanisms underlying the development and trajectory of PVS remain unclear. This study characterizes the transcriptome of clinical and phenotypic subtypes of PVS.
View Article and Find Full Text PDF