Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aims: The aim of the study is to develop advanced antibacterial agents as nanoparticles instead of antibiotics due to the emergence of antimicrobial resistance.

Background: Pseudomonas aeruginosa is capable of causing many diseases, including serious bacterial pneumonia. There is a need for an efficient antibacterial agent to kill these pathogens.

Objective: The objective of the study is the synthesis of advanced antibacterial agents as nanoparticles for biomedical applications that can play a vital role to kill Gram-negative bacteria (Pseudomonas aeruginosa).

Methods: A novel fabrication growth of hydrophilic spiky gold nanoparticles (SGNPs) via reduction method is reported.

Results: Surface plasmon resonance peak of the synthesized SGNPs was tuned under near infrared range. The SGNPs have anisotropic and spiky morphology with 68 nm size and -58 mV surface charge and are pure, having adsorption of the organic material. Pseudomonas aeruginosa treated with synthesized SGNPs showed 60% bacterial death at the concentration of 100 μM.

Conclusion: This work consists of novel synthesis of SGNPs via safe and simple reduction method. The synthesized SGNPs exhibit strong antibacterial activity against the Gram negative bacteria Pseudomonas aeruginosa measured using microplate assay test. The result showed that these SGNPs are ideal for biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1386207324666210617163037DOI Listing

Publication Analysis

Top Keywords

pseudomonas aeruginosa
16
synthesized sgnps
12
novel synthesis
8
spiky gold
8
gold nanoparticles
8
advanced antibacterial
8
antibacterial agents
8
agents nanoparticles
8
biomedical applications
8
bacteria pseudomonas
8

Similar Publications

Wound healing is often hindered by bacterial infection, oxidative stress, and bleeding. Traditional dressings cannot simultaneously regulate multiple microenvironments. To address the shortcomings of traditional dressings, this study constructed a dual-network photothermal responsive multifunctional hydrogel OBCTCu based on four natural ingredients, including Bletilla striata polysaccharide (BSP), chitosan (CS), tannic acid (TA), and Cu.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Myrciaria pilosa is a medicinal species traditionally used to treat inflammation, pain and infectious diseases. Essential oils extracted from medicinal plants have recently gained prominence as adjuvants in combating microbial resistance due to their antimicrobial properties and synergistic potential when combined with conventional antibiotics.

Aim Of The Study: Investigated the chemical composition, antibacterial activity, antibiofilm effects, and antibiotic-enhancing properties of Myrciaria pilosa essential oil.

View Article and Find Full Text PDF

Lithobates palmipes is a frog species whose skin secretions contain peptides belonging to the ranatuerin, brevinin, and temporin families. In this study, the peptide ranatuerin-2PMe was isolated and evaluated for its antimicrobial, hemolytic, antiproliferative, and chemotactic activities. Ranatuerin-2PMe (2933.

View Article and Find Full Text PDF

During early stages of biofilm formation, Pseudomonas aeruginosa (Pa) PAO1 can sense exopolysaccharide (EPS) trails of Psl deposited on a surface by previous Pa cells to detect trajectories of other cells and to orchestrate motility. This sensory signal is transduced into cyclic diGMP second messengers, but no known Psl receptors and adhesins participate in signal transduction. Here, using bacteria-secreted Psl trails, glycopolymer-patterned surfaces, longitudinal cell tracking, second messenger dual reporters and genetic mutations targeting EPS binding and surface twitching, we find that Pa is capable of sensing EPS directly through mutually constitutive interactions between type IV pili (T4P)-powered twitching and specific adhesin-EPS bonds.

View Article and Find Full Text PDF

Targeted discovery of sesquiterpene indole alkaloids from Greenwayodendron suaveolens.

Phytochemistry

September 2025

Équipe "Chimie des substances naturelles" BioCIS, CNRS, Université Paris-Saclay, 17, avenue des Sciences, 91400, Orsay, France. Electronic address:

Throughout the past decades, annonaceous plants have been of particular interest to the natural product community because of their therapeutic value and their richness in isoquinoline alkaloids. Taking advantage from our laboratory historical collection of these compounds, a MS/MS database of 322 isoquinolines and other metabolites from Annonaceae was implemented and named IQAMDB . The present report describes the dereplication of known alkaloids from stem barks of Greenwayodendron suaveolens (Engl.

View Article and Find Full Text PDF