Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present an in-depth study of the universal correlations of scattering-matrix entries required in the framework of nonstationary many-body scattering of noninteracting indistinguishable particles where the incoming states are localized wave packets. Contrary to the stationary case, the emergence of universal signatures of chaotic dynamics in dynamical observables manifests itself in the emergence of universal correlations of the scattering matrix at different energies. We use a semiclassical theory based on interfering paths, numerical wave function based simulations, and numerical averaging over random-matrix ensembles to calculate such correlations and compare with experimental measurements in microwave graphs, finding excellent agreement. Our calculations show that the universality of the correlators survives the extreme limit of few open channels relevant for electron quantum optics, albeit at the price of dealing with large-cancellation effects requiring the computation of a large class of semiclassical diagrams.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.103.052209DOI Listing

Publication Analysis

Top Keywords

wave packets
8
universal correlations
8
emergence universal
8
universal
4
universal s-matrix
4
correlations
4
s-matrix correlations
4
correlations complex
4
complex scattering
4
scattering wave
4

Similar Publications

Comparing abstraction and exchange channels in the H + HBr reaction: A stereodynamical control perspective.

J Chem Phys

September 2025

Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China.

This study investigates the stereodynamical control of the H + HBr (v = 0, j = 1) reaction within 0.01-1.50 eV collision energy using the time-dependent wave packet method.

View Article and Find Full Text PDF

X-ray phase measurements by time-energy correlated photon pairs.

Sci Adv

August 2025

Physics Department and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel.

The resolution of a measurement system is fundamentally constrained by the wavelength of the used wave packet and the numerical aperture of the optical system. Overcoming these limits requires advanced interferometric techniques exploiting quantum correlations. While quantum interferometry can surpass the Heisenberg limit, it has been confined to the optical domain.

View Article and Find Full Text PDF

Equilibrium properties of many-body systems with a large number of degrees of freedom are generally expected to be described by statistical mechanics. Such expectations are closely tied to the observation of thermalization, as manifested through equipartition in time-dependent observables, which takes place both in quantum and classical systems but may look very different in comparison. By studying the dynamics of individual lattice site populations in ultracold bosonic gases, we show that the process of relaxation toward equilibrium in a quantum system can be orders of magnitude faster than in its classical counterpart.

View Article and Find Full Text PDF

The time-reversal method (TRM) for Lamb wave-based damage detection faces challenges due to amplitude dispersion, which prevents achieving a zero damage index (DI) for undamaged structures. Additionally, the healthy state DI varies with input excitation frequency, which complicates establishing a consistent DI threshold, and a high threshold diminishes its sensitivity to damage. This article proposes a novel technique that eliminates amplitude dispersion in the main mode of the reconstructed signal after the time-reversal process, enabling a near-zero DI threshold.

View Article and Find Full Text PDF

Quantum coherences play a central role in a broad range of fields, including functional energy materials, biological systems, and molecular quantum information science. Coherences encode critical information about the phase and dynamics of a system, and their interaction with its environment. Particularly, the ultrafast charge transfer process between electron donor and acceptor species in functional energy materials is influenced by vibronic coherences.

View Article and Find Full Text PDF