Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Surrounded by intense anthropogenic activities, urban polluted rivers have increasingly been reported as a significant source of greenhouse gases (GHGs). However, unlike pollution and climate change, no integrated urban water models have investigated the GHG production in urban rivers due to system complexity. In this study, we proposed a novel integrated framework of mechanistic and data-driven models to qualitatively assess the risks of GHG accumulation in an urban river system in different water management interventions. Particularly, the mechanistic model delivered elaborated insights into river states in four intervention scenarios in which the installation of a new wastewater treatment plant using two different technologies, together with new sewage systems and additional retention tanks, were assessed during dry and rainy seasons. From the insights, we applied fuzzy rule-based models as a decision support tool to predict the GHG accumulation risks and identify their driving factors in the scenarios. The obtained results indicated the important role of new discharge connection and additional storage capacity in decreasing pollutant concentrations, consequently, reducing the risks. Moreover, among the major variables explaining the GHG accumulation in the rivers, DO level was considerably affected by the reaeration capacity of the rivers that was strongly dependent on river slope and flow. Furthermore, river water quality emerged as the most critical variable explaining the pCO and NO accumulation that implied that the more polluted and anaerobic the sites were, the higher were their GHG accumulation. Given its simplicity and transparency, the proposed modeling framework can be applied to other river basins as a decision support tool in setting up integrated urban water management plans.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2021.112999DOI Listing

Publication Analysis

Top Keywords

ghg accumulation
16
mechanistic data-driven
8
river system
8
integrated urban
8
urban water
8
water management
8
decision support
8
support tool
8
river
6
urban
5

Similar Publications

Low-carbon competitiveness of cities in solid waste disposal systems: Spatial and temporal variations in greenhouse gas emissions in the Yangtze River Delta.

Waste Manag

September 2025

Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; China Institute for Urban Governance, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

As one of the major sources of greenhouse gas (GHG) emissions, the municipal solid waste (MSW) management system was regarded as a key contributor to the construction of a low-carbon society. Understanding the evolution of waste treatment facilities and the corresponding GHG emissions was essential for assessing the low-carbon competitiveness of local communities. In this study, facility-level data were used to estimate GHG emissions from the waste management system in the Yangtze River Delta (YRD) and analyze their temporal and spatial variations.

View Article and Find Full Text PDF

One-time double-layer placement of controlled-release urea enhances wheat yield, nitrogen use efficiency and mitigates NO emissions.

Front Plant Sci

August 2025

Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs of China, Beijing, China.

Simultaneously enhancing the crop yield and reducing nitrous oxide (NO) emissions presents a critical challenge in sustainable agriculture. The application of nitrogen (N) fertilizer is a key strategy to enhance crop yield. However, conventional N application practices often lead to excessive soil N accumulation, insufficient crop N uptake and elevated greenhouse gas (GHG) emissions.

View Article and Find Full Text PDF

Reducing greenhouse gas emissions via harvest residue management in eucalyptus afforestation on Brazilian sandy soils.

Front Plant Sci

August 2025

Department of Agricultural Research and Diagnosis, Department of Agriculture, Livestock, Sustainable Production and Irrigation of Rio Grande do Sul, Porto Alegre, Brazil.

Introduction: The greenhouse gas balance is a central theme in discussions related to forest ecosystems. In this context, the present study evaluated the impact of five eucalyptus harvest residue management systems on atmospheric C-CO retention in soil, greenhouse gas (GHG) emissions, and the global warming potential (GWP) in plantations.

Methods: The management systems examined were: AR - all harvest residues retained on soil; NB - harvest residues kept on soil, except bark; NBr - harvest residues kept on soil, except branches; NR - all harvest residues (bark, branches, leaves) removed; NRs - all residues from the previous rotation and new plantation litter removed using shade cloth.

View Article and Find Full Text PDF

The article describes production of a high spatial resolution (30 m) bimonthly light use efficiency (LUE) based gross primary productivity (GPP) data set representing grasslands for the period 2000 to 2022. The data set is based on using reconstructed global complete consistent bimonthly Landsat archive (400TB of data), combined with 1 km MOD11A1 temperature data and 1° CERES Photosynthetically Active Radiation (PAR). First, the LUE model was implemented by taking the biome-specific productivity factor (maximum LUE parameter) as a global constant, producing a global bimonthly (uncalibrated) productivity data for the complete land mask.

View Article and Find Full Text PDF

Drought limits microplastic effects on soil greenhouse gas emissions by reducing microbial diversity.

J Environ Manage

September 2025

MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China. Electronic address:

Extreme droughts and microplastics (MPs) accumulation in agricultural soils threaten ecosystem sustainability. We examined the impact of MPs and drought stress on greenhouse gas (GHG) emissions, along with the transformation patterns of carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) functional genes, and microbial communities in agricultural soils. This study aims to explore how the interaction between different types of MPs and drought stress modulates soil properties, microbial dynamics, enzymatic activities, and ultimately influences soil GHG emissions.

View Article and Find Full Text PDF