98%
921
2 minutes
20
Background: Hepatitis B Virus (HBV) contributes to liver carcinogenesis via various epigenetic mechanisms. The newly defined epigenetics, epitranscriptomics regulation, has been reported to involve in multiple cancers including Hepatocellular Carcinoma (HCC). Our previous study found that HBx, HBV encodes X protein, mediated H3K4me3 modification in WDR5-dependent manner to involve in HBV infection and contribute to oncogene expression. AlkB Homolog 5 (ALKBH5), one of epitranscriptomics enzymes, has been identified to be associated with various cancers. However, whether and how ALKBH5 is dysregulated in HBV-related HCC remains unclear yet. This study aims to investigate ALKBH5 function, clinical significance and mechanism in HBV related HCC (HBV-HCC) patients derived from Chinese people.
Methods: The expression pattern of ALKBH5 was evaluated by RT-qPCR, Western blot, data mining and immunohistochemistry in total of 373 HBV-HCC tissues and four HCC cell lines. Cell Counting Kit 8 (CCK8) assay, Transwell and nude mouse model were performed to assess ALKBH5 function by both small interference RNAs and lentiviral particles. The regulation mechanism of ALKBH5 was determined in HBx and WDR5 knockdown cells by CHIP-qPCR. The role of ALKBH5 in HBx mRNA N6-methyladenosine (mA) modification was further evaluated by MeRIP-qPCR and Actinomycin D inhibitor experiment in HBV-driven cells and HBx overexpression cells.
Result: ALKBH5 increased in tumor tissues and predicts a poor prognosis of HBV-HCC. Mechanically, the highly expressed ALKBH5 is induced by HBx-mediated H3K4me3 modification of ALKBH5 gene promoter in a WDR5-dependent manner after HBV infection. The increased ALKBH5 protein catalyzes the mA demethylation of HBx mRNA, thus stabilizing and favoring a higher HBx expression level. Furthermore, there are positive correlations between HBx and ALKBH5 in HBV-HCC tissues, and depletion of ALKBH5 significantly inhibits HBV-driven tumor cells' growth and migration in vitro and in vivo.
Conclusions: HBx-ALKBH5 may form a positive-feedback loop to involve in the HBV-induced liver carcinogenesis, and targeting the loop at ALKBH5 may provide a potential way for HBV-HCC treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8194239 | PMC |
http://dx.doi.org/10.1186/s12885-021-08449-5 | DOI Listing |
bioRxiv
August 2025
Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School Boston, MA, USA.
N6-methyladenosine (m6A) is the most prevalent internal mRNA modification, enriched in the CNS yet poorly characterized in glioma. Using long-read RNA sequencing, we mapped m6A in an glioma model following knockdown (KD) of the reader IGF2BP2, writer METTL3, and eraser ALKBH5, with naive glioma cells and astrocytes as controls. Glioma cells exhibited a two-fold reduction in global m6A, suggesting progressive loss from healthy to malignant states.
View Article and Find Full Text PDFmedRxiv
August 2025
Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Gliomas are biologically heterogeneous brain tumors with marked differences in clinical behavior based on the IDH1 mutation status. While epigenetic dysregulation is well characterized, the contribution of RNA modifications, particularly N6-methyladenosine (m6A), remains underexplored. Using direct RNA nanopore sequencing of patient-derived gliomas, we generated the first isoform-resolved m6A maps across IDH1-mutant and wild-type tumors.
View Article and Find Full Text PDFMol Cancer
August 2025
Department of Health Sciences, Hiroshima Shudo University, Hiroshima, 731-3195, Japan.
Nucleic Acids Res
August 2025
Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
N 6-Methyladenosine (m6A) is a prevalent post-transcriptional modification in eukaryotic messenger RNA. Two cancer-linked human Fe(II) and 2-oxoglutarate (2OG)-dependent oxygenases, the fat mass and obesity associated-protein (FTO), and AlkB human homolog 5 (ALKBH5) catalyse m6A methyl group oxidation. While ALKBH5 has consistently been reported to catalyse m6A demethylation, there are conflicting reports concerning the FTO products.
View Article and Find Full Text PDFAntioxidants (Basel)
August 2025
Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam 13488, Republic of Korea.
Ferroptosis is an iron-dependent form of regulated cell death marked by lipid peroxidation in polyunsaturated phospholipids. In head and neck cancer (HNC), where resistance to chemotherapy and immunotherapy is common, ferroptosis offers a mechanistically distinct strategy to overcome therapeutic failure. However, cancer cells often evade ferroptosis via activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a key regulator of antioxidant and iron-regulatory genes.
View Article and Find Full Text PDF