Kinetic Process of an Alkaline Earth Metal Ion Transmembrane through ZIF-8.

J Phys Chem Lett

Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100083, P. R. China.

Published: June 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The confinement effect of biological ion channels regulates the transport of molecules and ions due to angstrom-sized pores. The structure of the potassium channel has a selection region (3-4 Å), a cavity (10 Å), and a gated region, while ZIF-8 has intrinsic pores with a 3.4 Å aperture and an 11.6 Å cavity similar to those of the potassium channel. Inspired by this, we constructed the glass/ZIF-8 hybrid membrane through an electrochemical growth process to explore the kinetics of the ion transmembrane by - curves and electrochemical impedance spectroscopy. These complementary approaches yield highly correlated results that show that ion transportation of the ZIF-8 membrane follows Arrhenius behavior. The rates of ions are controlled by the transmembrane activation energy, in which the ionic charge and radius play an important role.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.1c01469DOI Listing

Publication Analysis

Top Keywords

ion transmembrane
8
potassium channel
8
kinetic process
4
process alkaline
4
alkaline earth
4
earth metal
4
ion
4
metal ion
4
transmembrane zif-8
4
zif-8 confinement
4

Similar Publications

Microbial desalination cells (MDCs) have traditionally employed simplified NaCl solutions as feedwater for synchronous desalination and bioenergy recovery. Nevertheless, the specific mechanisms by which MDCs remove complex multi-ions from saline wastewater remain obscure. This study thoroughly investigated ion migration, bioelectrochemical dynamics, and microbial ecological responses across three distinct configurations: monovalent ions - PMDC, divalent cations - CMDC and anions - AMDC.

View Article and Find Full Text PDF

Pentameric ligand-gated ion channels control synaptic neurotransmission via an allosteric mechanism, whereby agonist binding induces global protein conformational changes that open an ion-conducting pore. For the proton-activated bacterial () ligand-gated ion channel (GLIC), high-resolution structures are available in multiple conformational states. We used a library of atomistic molecular dynamics (MD) simulations to study conformational changes and to perform dynamic network analysis to elucidate the communication pathways underlying the gating process.

View Article and Find Full Text PDF

Gap junctions (GJs) are critical structures for cardiac electrical signal conduction and synchronized contraction. Their fundamental components are transmembrane proteins from the connexin (Cx) family, which assemble into hexameric channels to form intercellular ion-permeable pathways, ensuring efficient electrical transmission and coordinated contraction between cardiac cells. Connexin 43 (Cx43), the most abundant connexin in the heart, serves as the primary constituent of ventricular gap junctions.

View Article and Find Full Text PDF

The cytoplasmic N- and C-termini are dispensable for SLAH3 to mediate nitrate-dependent ammonium detoxification in Arabidopsis.

Biochem Biophys Res Commun

August 2025

Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China. Electronic address: xiaochb@lz

Ammonium (NH) toxicity significantly limits nitrogen use efficiency (NUE) in agriculture. Nitrate (NO) supplementation mitigates this toxicity, with the anion channel SLAH3 playing a central role by mediating NO efflux to counteract NH-induced rhizosphere acidification. SLAH3, a plasma membrane protein with ten transmembrane domains and cytosolic N- and C-termini, is intrinsically silent.

View Article and Find Full Text PDF

Cancer immunotherapy has transformed oncological treatment paradigms, yet tumor resistance and immune evasion continue to limit therapeutic efficacy. Mitochondria-targeting organic sensitizers (MTOSs) represent an emerging class of therapeutic agents that exploit mitochondrial dysfunction as a convergent node for tumor elimination and immune activation. As central regulators of cellular metabolism, apoptotic signaling, and immune cell function, mitochondria serve as critical determinants of tumor progression and the immunological landscape within the tumor microenvironment (TME).

View Article and Find Full Text PDF