Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Siberia has undergone dramatic climatic changes due to global warming in recent decades. Yet, the ecological responses to these climatic changes are still poorly understood due to a lack of data. Here, we use a unique data set from the Russian 'Chronicles of Nature' network to analyse the long-term (1976-2018) phenological shifts in leaf out, flowering, fruiting and senescence of 67 common Siberian plant species. We find that Siberian boreal forest plants advanced their early season (leaf out and flowering) and mid-season (fruiting) phenology by -2.2, -0.7 and -1.6 days/decade, and delayed the onset of senescence by 1.6 days/decade during this period. These mean values, however, are subject to substantial intraspecific variability, which is partly explained by the plants' growth forms. Trees and shrubs advanced leaf out and flowering (-3.1 and -3.3. days/decade) faster than herbs (-1 day/decade), presumably due to the more direct exposure of leaf and flower buds to ambient air for the woody vegetation. For senescence, we detected a reverse pattern: stronger delays in herbs (2.1 days/decade) than in woody plants (1.0-1.2 days/decade), presumably due to the stronger effects of autumn frosts on the leaves of herbs. Interestingly, the timing of fruiting in all four growth forms advanced at similar paces, from 1.4 days/decade in shrubs to 1.7 days/decade in trees and herbs. Our findings point to a strong, yet heterogeneous, response of Siberian plant phenology to recent global warming. Furthermore, the results highlight that species- and growth form-specific differences among study species could be used to identify plants particularly at risk of decline due to their low adaptive capacity or a loss of synchronization with important interaction partners.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.15744DOI Listing

Publication Analysis

Top Keywords

leaf flowering
12
climatic changes
8
global warming
8
siberian plant
8
growth forms
8
siberian
4
siberian plants
4
plants shift
4
shift phenology
4
phenology response
4

Similar Publications

Background: Almond blossom blight, caused by Monilinia spp., is a notable fungal disease associated with intensified crop management practices. In this study, we aimed to investigate the epidemiology of Monilinia spp.

View Article and Find Full Text PDF

PHYTOCHROME INTERACTING FACTOR4 (PIF4) plays an important role in regulating plant thermomorphogenesis. In this study, two PIF4 homologous genes, BcPIF4-1 and BcPIF4-2 (Brassica rapa subsp. CHINENSIS PIF4-1 and PIF4-2), were investigated.

View Article and Find Full Text PDF

A single-nucleotide polymorphism in BoDW1 encoding microtubule-associated kinase causes dwarfing in Brassica oleracea.

Plant Physiol Biochem

September 2025

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. Electronic address:

Cabbage (Brassica oleracea var. capitata) is an important vegetable crop that is widely cultivated throughout the world. Plant height is a key agronomic trait in cabbage, influencing architecture and yield, and is mainly determined by cell division and stem expansion.

View Article and Find Full Text PDF

LlLRP1, an SHI/SRS transcription factor, mediates bulbil formation in Lilium lancifolium via regulation by LlWOX11 and response to NaCl stress.

Int J Biol Macromol

September 2025

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, Yunnan, 650224, China. Electronic address: mingju

Bulbil formation in Lilium lancifolium represents a pivotal vegetative reproduction strategy, yet the transcriptional regulatory network governing this process remains largely uncharacterized. Here, we identify LlLRP1 by full-length cloning, sequence analysis and subcellular localization, an SHI/SRS family transcription factor, as a key mediator of bulbil morphogenesis. Transcriptomic profiling revealed that LlLRP1 is a downstream target of LlWOX11, with its promoter harboring conserved binding motifs (AAAG, AGTA) validated by yeast one-hybrid, dual-luciferase reporter, and electrophoretic mobility shift assays.

View Article and Find Full Text PDF

Tomato (Solanum lycopersicum) is a globally important crop, yet the gene regulatory networks (GRNs) controlling gene expression remain poorly understood. In this study, we constructed GRNs for roots, leaves, flowers, fruits, and seeds by inferring transcription factor (TF)-target interactions from over 10,000 RNA-seq libraries using the GENIE3 algorithm. We refined these networks with gene co-expression data and computational predictions of TF binding sites.

View Article and Find Full Text PDF