Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Breast cancer is the leading cause of tumor-associated death among women worldwide, and new therapeutic strategies are required to improve the post-surgery prognosis and quality of life of patients. Radiofrequency ablation (RFA) is a less invasive approach compared with traditional surgical resection to treat malignancies, and the combination of RFA and chemotherapeutic agents, including formosanin C (FC), can synergistically improve the curative effects against breast carcinoma. However, the detailed mechanisms remain unclear. In the present study, nude mice were used to identify the influence of FC on the therapeutic efficacy of RFA for breast cancer. Flow cytometry was performed to demonstrate the proportional alteration of CD8 and CD45 T cells with different biomarkers, including CD107a, IFNγ and TNFα. It was demonstrated that FC enhanced the therapeutic efficacy of RFA in breast cancer, while RFA combined with FC improved the proportion of IFNγ and TNFα CD8 T cells and CD107a CD8 T cells in tumor-infiltrating lymphocytes, thus increasing the immune responses caused by surgery and chemotherapy. The present study indicated that FC may promote the curative efficacy of ultrasound-guided RFA against breast tumor by regulating adaptive immune responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8170285PMC
http://dx.doi.org/10.3892/ol.2021.12811DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
rfa breast
12
curative efficacy
8
efficacy ultrasound-guided
8
radiofrequency ablation
8
therapeutic efficacy
8
efficacy rfa
8
ifnγ tnfα
8
cd8 cells
8
immune responses
8

Similar Publications

Introduction: Cutaneous scalp metastases from breast carcinoma (CMBC) represent an uncommon manifestation of metastatic disease, with heterogeneous clinical presentations, including nodular or infiltrative lesions and scarring alopecia (alopecia neoplastica). The absence of standardized diagnostic criteria, particularly for alopecic phenotypes, poses challenges to early recognition of CMBC, which may represent either the first indication of neoplastic progression or a late recurrence.

Materials And Methods: We retrospectively analyzed a multicenter cohort of 15 patients with histologically confirmed CMBC.

View Article and Find Full Text PDF

PRMT1-Mediated PARP1 Methylation Drives Lung Metastasis and Chemoresistance via P65 Activation in Triple-Negative Breast Cancer.

Research (Wash D C)

September 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, characterized by a high propensity for metastasis, poor prognosis, and limited treatment options. Research has demonstrated a substantial correlation between the expression of protein arginine N-methyltransferase 1 (PRMT1) and enhanced proliferation, metastasis, and poor outcomes in TNBC. However, the specific role of PRMT1 in lung metastasis and chemoresistance remains unclear.

View Article and Find Full Text PDF

Purpose: This study aimed to conduct functional proteomics across breast cancer subtypes with bioinformatics analyses.

Methods: Candidate proteins were identified using nanoscale liquid chromatography with tandem mass spectrometry (NanoLC-MS/MS) from core needle biopsy samples of early stage (0-III) breast cancers, followed by external validation with public domain gene-expression datasets (TCGA TARGET GTEx and TCGA BRCA).

Results: Seventeen proteins demonstrated significantly differential expression and protein-protein interaction (PPI) found the strong networks including COL2A1, COL11A1, COL6A1, COL6A2, THBS1 and LUM.

View Article and Find Full Text PDF

A strategy for targeting tumor-associated hypoxia utilizes reductase enzyme-mediated cleavage to convert biologically inert prodrugs to their corresponding biologically active parent therapeutic agents selectively in areas of pronounced hypoxia. Small-molecule inhibitors of tubulin polymerization represent unique therapeutic agents for this approach, with the most promising functioning as both antiproliferative agents (cytotoxins) and as vascular disrupting agents (VDAs). VDAs selectively and effectively disrupt tumor-associated microvessels, which are typically fragile and chaotic in nature.

View Article and Find Full Text PDF

Breast cancer continues to present a major clinical hurdle, largely attributable to its aggressive metastatic behavior and the suboptimal efficacy of standard chemotherapeutic regimens. Cisplatin (CDDP) is a representative platinum drug in the treatment of breast cancer, however, its therapeutic application is often constrained by systemic toxicity and the frequent onset of chemoresistance. Here, we introduce a novel charge-adaptive nanoprodrug system, referred to as PP@, engineered to respond to tumor-specific conditions.

View Article and Find Full Text PDF