98%
921
2 minutes
20
Hyperspectral imaging (HSI) is a spectroscopic technique which captures images at a high contrast over a wide range of wavelengths to show pixel specific composition. Traditional uses of HSI include: satellite imagery, food distribution quality control and digital archaeological reconstruction. Our lab has focused on developing applications of HSI fluorescence imaging systems to study molecule-specific detection for rapid cell signaling events or real-time endoscopic screening. Previously, we have developed a prototype spectral light source, using our modified imaging technique, excitation-scanning hyperspectral imaging (HIFEX), coupled to a commercial colonoscope for feasibility testing. The 16 wavelength LED array was combined, using a multi-branched solid light guide, to couple to the scope's optical input. The prototype acquired a spectral scan at near video-rate speeds (∼8 fps). The prototype could operate at very rapid wavelength switch speeds, limited to the on/off rates of the LEDs (∼10 μs), but imaging speed was limited due to optical transmission losses (∼98%) through the solid light guide. Here we present a continuation of our previous work in performing an in-depth analysis of the solid light guide to optimize the optical intensity throughput. The parameters evaluated include: LED intensity input, geometry (branch curvature and combination) and light propagation using outer claddings. Simulations were conducted using a Monte Carlo ray tracing software (TracePro). Results show that transmission within the branched light guide may be optimized through LED focusing lenses, bend radii and smooth tangential branch merges. Future work will test a new fabricated light guide from the optimized model framework.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8176559 | PMC |
http://dx.doi.org/10.1117/12.2510506 | DOI Listing |
Folia Phoniatr Logop
September 2025
Introduction There is no definitive, comprehensive guide for diagnosing stuttering in multilingual speakers, and research suggests that monolingual-based diagnostic criteria may lead to misidentification in this population. This systematic review aimed to identify and consolidate conventional diagnostic guidelines for multilingual speakers and evaluate their validity in light of empirical evidence on stuttering and multilingualism. Method A systematic review was conducted using PubMed, Science Direct, SAGE, CINAHL, and Google Scholar using specific MESH terms (e.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
September 2025
The spectacular success of training large models on extensive datasets highlights the potential of scaling up for exceptional performance. To deploy these models on edge devices, knowledge distillation (KD) is commonly used to create a compact model from a larger, pretrained teacher model. However, as models and datasets rapidly scale up in practical applications, it is crucial to consider the applicability of existing KD approaches originally designed for limited-capacity architectures and small-scale datasets.
View Article and Find Full Text PDFAcc Chem Res
September 2025
Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada.
ConspectusMolecular photochemistry, by harnessing the excited states of organic molecules, provides a platform fundamentally distinct from thermochemistry for generating reactive open-shell or spin-active species under mild conditions. Among its diverse applications, the resurgence of the Minisci-type reaction, a transformation historically reliant on thermally initiated radical conditions, has been fueled by modern photochemical strategies with improved efficiency and selectivity. Consequently, the photochemical Minisci-type reaction ranks among the most enabling methods for C()-H functionalizations of heteroarenes, which are of particular significance in medicinal chemistry for the rapid diversification of bioactive scaffolds.
View Article and Find Full Text PDFDiscov Nano
September 2025
Department of Rehabilitation Medicine, Rehabilitation Medical Center, Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
Immunoelectron Microscopy (IEM) is a technique that combines specific immunolabeling with high-resolution electron microscopic imaging to achieve precise spatial localization of biomolecules at the subcellular scale (< 10 nm) by using high-electron-density markers such as colloidal gold and quantum dots. As a core tool for analyzing the distribution of proteins, organelle interactions, and localization of disease pathology markers, it has irreplaceable value, especially in synapse research, pathogen-host interaction mechanism, and tumor microenvironment analysis. According to the differences in labeling sequence and sample processing, the IEM technology system can be divided into two categories: the first is pre-embedding labeling, which optimizes the labeling efficiency through the pre-exposure of antigenic epitopes and is especially suitable for the detection of low-abundance and sensitive antigens; the second is post-embedding labeling, which relies on the low-temperature resin embedding (e.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Street, 400084, Cluj-Napoca, Romania.
Magnetic nanoparticles are widely explored in biomedical applications, particularly as MRI contrast agents and for magnetic hyperthermia. However, their photothermal capabilities under near-infrared (NIR) irradiation remain underexplored in realistic, tissue-like environments. This study provides a comprehensive assessment of ultrasmall FeO nanoparticles (9.
View Article and Find Full Text PDF