A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

AI-based improvement in lung cancer detection on chest radiographs: results of a multi-reader study in NLST dataset. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Assess if deep learning-based artificial intelligence (AI) algorithm improves reader performance for lung cancer detection on chest X-rays (CXRs).

Methods: This reader study included 173 images from cancer-positive patients (n = 98) and 346 images from cancer-negative patients (n = 196) selected from National Lung Screening Trial (NLST). Eight readers, including three radiology residents, and five board-certified radiologists, participated in the observer performance test. AI algorithm provided image-level probability of pulmonary nodule or mass on CXRs and a heatmap of detected lesions. Reader performance was compared with AUC, sensitivity, specificity, false-positives per image (FPPI), and rates of chest CT recommendations.

Results: With AI, the average sensitivity of readers for the detection of visible lung cancer increased for residents, but was similar for radiologists compared to that without AI (0.61 [95% CI, 0.55-0.67] vs. 0.72 [95% CI, 0.66-0.77], p = 0.016 for residents, and 0.76 [95% CI, 0.72-0.81] vs. 0.76 [95% CI, 0.72-0.81, p = 1.00 for radiologists), while false-positive findings per image (FPPI) was similar for residents, but decreased for radiologists (0.15 [95% CI, 0.11-0.18] vs. 0.12 [95% CI, 0.09-0.16], p = 0.13 for residents, and 0.24 [95% CI, 0.20-0.29] vs. 0.17 [95% CI, 0.13-0.20], p < 0.001 for radiologists). With AI, the average rate of chest CT recommendation in patients positive for visible cancer increased for residents, but was similar for radiologists (54.7% [95% CI, 48.2-61.2%] vs. 70.2% [95% CI, 64.2-76.2%], p < 0.001 for residents and 72.5% [95% CI, 68.0-77.1%] vs. 73.9% [95% CI, 69.4-78.3%], p = 0.68 for radiologists), while that in cancer-negative patients was similar for residents, but decreased for radiologists (11.2% [95% CI, 9.6-13.1%] vs. 9.8% [95% CI, 8.0-11.6%], p = 0.32 for residents and 16.4% [95% CI, 14.7-18.2%] vs. 11.7% [95% CI, 10.2-13.3%], p < 0.001 for radiologists).

Conclusions: AI algorithm can enhance the performance of readers for the detection of lung cancers on chest radiographs when used as second reader.

Key Points: • Reader study in the NLST dataset shows that AI algorithm had sensitivity benefit for residents and specificity benefit for radiologists for the detection of visible lung cancer. • With AI, radiology residents were able to recommend more chest CT examinations (54.7% vs 70.2%, p < 0.001) for patients with visible lung cancer. • With AI, radiologists recommended significantly less proportion of unnecessary chest CT examinations (16.4% vs. 11.7%, p < 0.001) in cancer-negative patients.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00330-021-08074-7DOI Listing

Publication Analysis

Top Keywords

lung cancer
20
[95%
16
cancer-negative patients
12
visible lung
12
residents
11
radiologists
10
cancer detection
8
detection chest
8
chest radiographs
8
study nlst
8

Similar Publications